T T T T R T T T T

ALy e

- Lo
- E

- NASA Conference Publication 2491 (- [t 75
N (5T
JA

J2/5 /O

orkshop
lons

MNNUAL wCErSHCPE CN Nlde=17200

16 ASA-CE=2491) pibkzsT A

ciaCk CFELATICONS BLICKATLOLDM 22D PCECLICS -=-THRU=-~-

{sCak t7) (NAER) ICE O & CsCcL 12u Nsg=17.¢81
Unclas

H1/59 011510

Proceedings of a workshop hosted by
Lyndon B. Johnson Space Center
Houston, Texas
August 5-7, 1987

NASA Conference Publication 2491

First Annual Workshop
on Space Operations

Automation and Robotics
(SOAR '87)

Proceedings of a workshop sponsored by
National Aeronautics and Space Administration
and the U.S. Air Force

cosponsored by University of Houston-Clear Lake
and hosted by Lyndon B. Johnson Space Center
August 5-7, 1987

NASA

National Aeronautics and
Space Administration

Scientific and Technical
Information Branch

1987

PREFACE

This document represents the proceedings of the First Annual Workshop on Space Operations
Automation and Robotics, otherwise known as SOAR ‘87, which was held at the NASA Johnson
Space Center (JSC) on August 5-7, 1987.

This workshop was jointly sponsored by the National Aeronautics and Space Administration and
the United States Air Force. It was cosponsored by the University of Houston Clear Lake. SOAR '87
helped to establish communications between individuals and organizations involved in similar
research and technology. it brought together project/program managers in open exchange
through presentation of technical papers and panel discussions. The objective of SOAR ‘87 was to
provide a vehicle for engineers, scientists and managers of both the Air Force and NASA to come
together in a workshop environment and exchange ideas, problems/problem solutions, and
technical information on projects of mutual interest and, perhaps most importantly, to build a solid
foundation for future interaction and cooperation. The workshop consisted of technical sessions
emphasizing Al/Expert Systems, Human Factors, Environment, Robotics and Application
Development and Transition. The workshop will rotate annually between NASA and an Air Force
installation.

The papers included in these proceedings were published in general as received from the authors
with minimum modification and editing. Information contained in the individual papers is not to
be construed as being officially endorsed by NASA.

MESSAGE FROM THE GENERAL CHAIR AND ASSISTANT GENERAL CHAIR

The objective of SOAR ‘87 is to provide a vehicle for engineers, scientists, and
managers of both the Air Force and NASA to come together in a workshop
environment and exchange ideas, problems/problem solutions, and technical
information on projects of mutual interest. Papers are invited based on the joint
Air Force/NASA database of Space Operations Automation and Robotics projects.
Attempts have been made to combine similar Air Force and NASA projects into
joint sessions for maximum exchange of information. We believe SOAR '87 offers
the best opportunitﬁ to ensure communications between the Air Force and NASA
in an environment that meets the needs of all participants. | would like to express
my appreciation to the various Air Force and NASA organizations that have
worked so diligently with the belief that mutual benefit can be derived by
coordination of mutual interest.

Robert H. Brown
NASA/Johnson Space Center

SOAR ‘87 is a unique opportunity for members of the Air Force and NASA technical
communities to discuss problems of mutual interest and, perhaps most
importantly, to build a solid foundation for future interaction and cooperation.
SOAR 87 will present two distinct facets of Automation and Robotics. Sessions
under each will focus on the fundamental issues that must be addressed to
continue to advance the state-of-the-art. Additional sessions will emphasize the
technical issues associated with the integration and transition of Automation and
Robotics technology. Future applications that involve either or both of these
technologies are dependent upon success in each facet. SOAR ‘87 will also feature
sessions in Human Factors and Environment Technology. These sessions will
contribute to the inter-disciplinary nature of the workshop. We look forward to
your attendance and your participation in the technical program.

Capt. Gregory E. Swietek
HQ AFSC Andrews AFB

‘RECEDING PAGE BLANK NOT FILM:D

ACKNOWLEDGEMENT

Acknowiedgements are due to all the personnel who provided the logistic support
necessary to the success of this workshop. Thanks are also due to Computer
Science Corporation, Lincom, Barrios Technology, McDonnell-Douglas
Corporation, and Omniplan Corporation in extending the support of their
personnel.

SOAR ‘87 ORGANIZING COMMITTEE
FIRST ANNUAL WORKSHOP ON SPACE OPERATIONS AUTOMATION

AND ROBOTICS

General Chair Robert H. Brown NASA/JSC
Assistant General Chair Capt. Gregory Swietek HQ AFSC/DLAC
Executive Chair Sandy Gritfin NASA/JSC
Technical Chair Robert T. Savely NASA/JSC
Technical Program Chair Ann S. Baker NASA/CSC
Assistant Program Chair Dr. Timothy F. Cleghorn NASA/JSC
Administrative Chair Carol Kasworm U of H/Clear Lake
Local Publicity Chair Zafar Taqvi NASA/LEMSCO
Exhibit Program Committee Chair David W. Heath NASA/ISC

TECHNICAL AREA DEVELOPERS

Application Development Daniel C. Bochsler, NASA/Lincom
& Transition Maj. Steve Cross USAF AFWAL
Robotics Donna Pivirotto NASA/JPL
Maj. Steve LeClair USAF AFWAL
Al Expert Systems Dr. Jack P. Aldridge NASA/MDAC
Maj. Steve Cross USAF AFWAL
Environment Dr. Stuart Nachtwey NASA/JSC
Dr. Bruce Stuart USAF
Human Factors Dave Nagel NASA/ARC

Dr. Bob Bachert USAF AAMRL

CONTENTS

APPLICATION DEVELOPMENT AND TRANSITION

SESSION 1: Automation of Checkout, Ground Support and Logistics
SESSION CHAIR: Mr. Robert Johnson,Wright-Patterson AFB

IMIS: Integrated Maintenance InformationSystem
Space Shuttle Onboard Navigation Console Expert/Trainer System
MPAD MCC Workstation System: ADDAMandEEVE
Knowledge-Based Jet Engine Diagnostics,

SESSION 2: Automated Software Development
SESSION CHAIR: Mr. Robert Hinson,NASA Johnson Space Center

Development of a Comprehensive Software Engineering Environment

Simplifying the Construction of Domain-Specific Automatic Programming
Systems: The NASA Automated Software Development Workstation Project

The Knowledge Based Software Assistant

SESSION 3: Man-Machine Interfaces: Training and Tutoring
SESSION CHAIR: Lt. Col. Hugh Burns, Brooks AFB

An Intelligent Training System for Payload-Assist Module Deploys

Tutoring Electronic Troubleshooting in a Simulated Maintenance Work Environment

Intelligent Tutoring Systems as Tools for Investigating Individual Differences
N LBArMING ..o

An Intelligent Tutor for the Space Domain i

SESSION 4: Neural Networks and Related Studies
SESSION CHAIR: Lt. Col. Daniel Biezad, Wright Patterson AFB,
Maj. Stephen E. Cross, Wright Patterson AFB
Neural Network Based Architectures for Aerospace Applications
Development and Experimentation of an Eye/Brain/Task Testbed

NASA JSC Neural Network Survey Results

Design of a Neural Network Simulator on a Transputer Array

"

15

25

3

39

45

53

61

71

77

85

93

SESSION S: Functional Utilization
SESSION CHAIR: Lt. Roger Chilcott, NASA Johnson Space Center

Interchange of Electronic Design Through VHDLand EIS 119

Development of a Coupled Expert System for the Spacecraft Attitude

Control Problem 125

User Interface Devices for Mission Control 133

The Desktop Interface in intelligent TutoringSystems 135
SESSION 6: Man-Machine Interfaces: Techniques and Methods

SESSION CHAIR: Mr. Robert F. Bachert, Wright Patterson AFB

Dynamic Human Dexterity and Control System (DEXDROID)

(Paper not provided by publicationdate) L. 145
System Integrated Human Engineering (HE) on the Navy's RTIF/RAMP Project 147
The Ideal Modeling Methodology: Capabilities and Applications 153

The Rapid Intelligent Prototyping Laboratory: A Direct Manipulation Tool for
Prototyping and Evaluating User-System Interfaces
(Paper not provided by publicationdate) P 159

SESSION 7: Systems Engineering and Distributed/Parallel Architectures
SESSION CHAIR: Capt. Richard Mraz, NASA Johnson Space Center

Cooperative Analysis Expert Situation AssessmentResearch 161

Performance Analysis of Parallel Branch and Bound Search with the

Hypercube Architecture 165

Task Allocation in a Distributed Computing System 173

User Engineering: A New Look atSystem Engineering 183
SESSION 8: Validation and Verification

SESSION CHAIR: Glen Castore, Honeywell, Inc.
Approaches to the Verification of Rule-Based Expert Systems 191

A Formal Approach to Validation and Verification for Knowledge-Based

Control SYStems e 197
Expert System Verification Concernsin an Operations Environment 203
Building Validation Tools for Knowledge-Based Systems 209

Vi

ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS

SESSION 1: Knowledge Acquisition | (Diagnosis/Knowledge Base Building)

SESSION CHAIR: Capt. James Ramsey, Kirtland AFB
Diagnosis: Reasoning from First Principles and Experiential Knowledge 217
Verifying Shuttle Onboard Software Using Expert Systems 223
Smart Bit (paper not written) 227

SESSION 2: Knowledge Acquisition Il (Learning/Knowledge Base Maintenance)

SESSION CHAIR: Capt. James Ramsey, Kirtland AFB

A Multiexpert Knowledge System Architecture for Qualitative Process Theory

(Paper not provided by publicationdate) 229
Teaching Artificial Neural Systems to Drive: Manual Training Techniques for
AUTLONOMOUS SYS eMS . . . e 231
SESSION 3: Knowledge Acquisition lll (World Modeling)
SESSION CHAIR: Capt. John V. Ferrante, Wright Patterson AFB
Design Knowledge Capture for the Space Station 239
Config: Qualitative Simulation Tool for Analyzing Behavior of Engineered Devices .. 247
A Situation-Response Model for Intelligent Pilot Aiding 253
A Human Performance Modeling Approach to Intelligent Decision Support Systems . 261
SESSION 4: Uncertainty
SESSION CHAIR: Mr. Robert N. Lea, NASA Johnson Space Center
The Empirical Accuracy of Uncertain InferenceModels 269
Reasoning Under Uncertainty (Paper notwritten) 277

Decision-Theoretic Control of Planning Under Uncertainty
(Paper not provided by publicationdate) 279

Autonomous Control Procedures for Shuttle Rendezvous Proximity Operations 281

vii

SESSION 5: Reasoning | (Planning and Scheduling)
SESSION CHAIR: Nancy Orlando Sliwa, NASA Langley Research Center

Artificial Intelligence (Al), Operations Research (OR), and Decision Support Systems (DSS):

A Conceptual Framework 287
Robotic Planner Expert System (RPLANES), 293
Expert Mission Planning and Replanning Scheduling System for NASA KSC Payload

OPerations 299
Trimodal Interpretation of Constraints forPlanning 307

Range and Mission Scheduling Automation Using Combined Al and

Operations Research Techniques i 315
SESSION 6: Reasoning Il (Explanation and Decision Making Applications)
SESSION CHAIR: Maj. Wesley M. Smith, Offutt AFB
Advanced Decision Aiding Techniques ApplicabletoSpace 321
AutomaticRoutingModule 327
Robotic Air Vehicie Blending Artificial Intelligence with Conventional Software 335

SWAN: An Expert System With Natural Language Interface for Tactical Air
Capability AsSessment 341

SESSION 7: Monitor and Control
SESSION CHAIR: Dr. A. S. Dioxiadas, Ford Aerospace & Communication Corp.

Expert System Applications in Spacecraft Subsystem Controllers 349

The KATE Shell: An Implementation of Model-Based Control, Monitor and Diagnosis

.. 355
An Expert System for Design of Digital Autopilots
(Paper not provided by publicationdate) L. 361
Beyond Rules: The Next Generation of ExpertSystems 363
SESSION 8: Architectures for Real-Time Al
SESSION CHAIR: Lt. Mark Peot, Wright Patterson AFB
A Conceptual Framework for intelligent Real Time Information Processing 371
TDAS: The Thermal Expert System (TEXSYS) Data Acquisition System 375
Implementing CLIPS on a Parallel Computer 383
Rea!-Time Artificial Intelligence Issues in the Development of the Adaptive
Tactical Navigator e 389

viii

ROBOTICS

SESSION 1: Kinematic, Dynamics, Mobility and Control

SESSION CHAIR: Dr. Richard Volz, University of Michigan
Software for Integrated Manufacturing Systems, Part | 397
Software for Integrated Manufacturing Systems, Part Il 399
Communication and Control in an Integrated Manufacturing System 405

SESSION 2: Sensing and Perception (A)

SESSION CHAIR: Dr. Ronald C. Benton, Honeywell, Inc.
Development of Moire Machine Vision 413
Implementation of a Robotic Flexible Assembly System 421

CAD Based 3-D Object Recognition

(Paper not provided by publicationdate) L 431
System Integration of a Telerobotic Demonstration S ystem (TDS) Testbed 433
SESSION 3: Sensing and Perception (B)

SESSION CHAIR: Dr. Rui J. P. deFigueiredo, Rice University
Vision Technology/Algorithms for Space Robotics Applications 441

Machine Vision by Optical Correlation, Programmable Spatial Light
Modulators, and Real-Time Image Warping

(Paper not provided by publicationdate)l 455
SESSION 4: Manipulation, End Effectors
SESSION CHAIR: Dr. Robert H. Cannon, Stanford University
An Optimal Resolved Rate Law for Kinematically Redundant Manipulators 457
Telerobotic Research at NASA Langley ResearchCenter 465

Manipulator Arm Design for the Extravehicular Teleoperator Assist Robot (ETAR):
Applicationsonthe Space Station 471

Development of a Facility Using Robotics for Testing Automation of
Inertial INStrumMents e 477

SESSION 5: Telerobotics
SESSION CHAIR: Mr. William Schneider, NASA Johnson Space Center

Space Station Assembly: Working with Robotics
(Papernotwritten) i

Telerobotic Truss Assembly
Crew Interface with a Telerobotic Control Station
Telerobot for Space Station
The Use of Computer Graphic Simulation in the Development of Robotic Systems

SESSION 6: Task Planning and Reasoning
SESSION CHAIR: Ms. Edith Taylor, NASA Johnson Space Center

Intelligent Robotic Tracker

Calibration of Neural Networks Using Genetic Algorithms, with Application
toOptimal Path Planning

An Efficient Representation of Spatial Information for Expert Reasoning in
Robotic Vehicles e

Task-level Robot Programming: Integral Part of Evolution from Teleoperation to
AULONOMY L e

HUMAN FACTORS

SESSION 1: Crew Integration and Protection
SESSION CHAIR: Robert F. Bachert, Wright Patterson AFB

Hyper Velocity Technology (HVT) Crew Escape

Aircraft Transparency Analysis Methods
(Paper not provided by publicationdate) il

Surrogate Measures: A proposed alternative in Human Factors Assessment of
Operational Measures of Performance

AUTHOR INDEX ..

IMIS - 72 07
Integrated Maintenance Information System
A Maintenance Information Delivery Concept

Capt. Joseph C. Von Holle, Wright-Patterson AFB

Introduction

The Air Force Human Resources Laboratory (AFHRL), Logistics and Human Fac-
tors Division, is dedicated to improving the supportability of Air Force systems
and the productivity of maintenance personnel. The Combat Logistics Branch of
AFHRL is developing the Integrated Maintenance Information System (IMIS).
The objective of IMIS is to improve the capabilities of aircraft maintenance organ-
izations by providing technicians with a single information system for intermediate
and organizational maintenance.

The modern maintenance environment is being increasingly inundated with addi-
tional information systems. Examples include the Comprehensive Engine
Management System (CEMS), the Core Automated Maintenance System (CAMS),
and the Automated Technical Order System (ATOS). Each new "maintenance
aid" is a maintenance hindrance because it forces technicians to learn yet another
system. To utilize the valuable information that these new systems offer, while
eliminating the specialization required for each, AFHRL is developing IMIS.
IMIS will utilize a very small portable computer/display to interface with on-
aircraft systems and ground computer systems to provide a single, integrated
source of the information needed to perform maintenance on the line and in the
shop. IMIS will consist of a workstation for use in the shop, a portable computer
for flightline use, and an aircraft interface panel for interacting with aircraft sys-
tems (Figure 1). The system will provide the technician with direct access to sev-

IMIS
:.L
BT
|o90052 .
Alr craft
1 foce Partable
Panel

Figure 1: Integrated Maintenance Information System

1
August 6, 1986

eral maintenance information systems and data bases including CAMS, the supply
system, ATOS, and an automated training data base. IMIS will process, integrate,
and display maintenance information to the technician. The system will display
graphic technical instructions, provide intelligent diagnostic advice, provide air-
craft battle damage assessment aids, analyze in-flight performance and failure data,
analyze aircraft historical data, and access and interrogate on-board built-in-test
capabilities. It will also provide the technician with easy, efficient methods to
receive work orders, report maintenance actions, order parts from supply, and
complete computer-aided training lessons and simulations. The portable computer
will make it possible to present quality information by taking advantage of the
computer’s ability to interact with, and tailor information to, technicians with
varying levels of expertise.

Development is proceeding in three stages (Figure 2). Stage I, the Computer-
based Maintenance Aids System (CMAS) established basic requirements for
automated Technical Order (TO) data content, presentation formats, and basic
delivery system hardware/software. Stage 1I, the Portable Computer-based
Maintenance Aids System (PCMAS), is designed to implement the TO presenta-
tion specified in Stage I on the flightline, demonstrate interactive diagnostics and
aircraft battle damage repair assessment, and test the feasiblility of these concepts
during a field test. Stage III, Full IMIS Demonstration, will extend the concepts
specified in Stages I and II, with an emphasis on information system integration
throughout the maintenance complex. It will also incorporate state-of-the-art tech-
nology to reduce size and weight, while increasing capabilities.

CMAS
B85 ;
Intermediate-Level ‘ Right Line
User Requirements ! Flexible Research Tool
Off 4heShelf { Durable

Figure 2: Three Stages of IMIS

ORIGINAL PAGE IS
2 OF POOR QUALITY

August 6, 1986

STAGE 1
Computer-based Maintenance Aids System (CMAS)

Due to the increasing complexity and number of modern weapon systems, the Air
Force is faced with an ever growing number of paper-based Technical Orders
(TOs). This has greatly increased costs and distribution problems. In addition, it
has compounded problems with inaccurate data and lenghty correction times. To
remedy the problem and provide improved techincal data, the Air Force is moving
toward the digital storage and presentation of TOs. The Air Force Human
Resources Laboratory believes the maintenance technician’s needs should be con-
sidered first in the design of such a system. AFHRL has done extensive research
to, develop the technology required for an automated technical data system. The
research has included a feasibility study, studies to develop the man/machine
interface techniques required for an effective system, and studies to determine the
information content requirements and presentation formats.

Two prototype systems were developed for intermediate level maintenance to test
information presentation and man/machine interface techniques. Specific concepts
tested were multiple levels of detail, random access to TO data, presentation of
diagrams larger than the screen, function key utility, human interaction, and troub-
leshooting. The field evaluations established the feasibility and desirability of an
automated maintenance system. The evaluations also demonstrated the importance
of reformatting the data for automated presentation. Further analysis indicated
that each paragraph should have associated tables and graphics and should not be
dependent on the paragraphs before it. However, paragraphs should be linked in a
hierarchical fashion so that the data can be reproduced as a paper TO, if desired.
The data base must be in a neutral exchange format and should not contain code
specific to screen presentation or other hardware limitations.

The first prototype system was tested at Offut AFB in December 1984. The
development and evaluation of the system provided useful information with
regards to computer size, response time, and color display. However, due to a
number of problems, it did not gain user acceptance and was considered unsuit-
able for its proposed use. A second prototype was then developed based upon les-
sons learned from the first system.

The GRID Compass II computer was selected to host the second prototype. The
GRID was chosen for its small size and its powerful capabilities which made it an
ideal candidate for a CMAS prototype. The TO information used for the field test
applied to the RT-728A/APX-64 radio receiver-transmitter. The checkout and
analysis section of the data was analyzed to determine any additional sections
needed to support the checkout. These additional sections included portions of
Theory of Operation, Illustrated Parts Breakdown, and Troubleshooting. Addi-
tional troubleshooting routines were developed by an experienced technician. Fig-
ure 3 provides a sample screen presentation.

3
August 6, 1986

ORIGINAL PAGE IS
OF POOR QUALITY

1R S-Lwb Fa-0 RETEIVER TENSITIUIT. OHEDS P S

f. Set AUX ATTEN +3-60 dB 1—
control (1) to -28 dB. >
- 1
s. Set AN/APN-239A TRANSPONDER D QQE'
SET CONTROL MASTER switch ceoe oo
(2) to LOK. Sromal

Gerarat or

h. ARdjust AUX ATTEN +3-568 dB
control (1) until PRF
COUNTER HETER indicates
averase count of 4508
(fluctuatins readins).

APM-229n

D ET R R E rmov: B T.Fi.r B i10C MEinecr K ;

Figure 3: Sample Automated Technical Order Screen (reduced)

The results of the development and subsequent field test of the CMAS program
were documented in two draft specifications. The Technical Data Content
Specification established requirements for the content and formatting of data to be
presented via electronic media. The Technical Data System Functional
Specification established the system delivery functions, basic hardware/software
capabilities, and the system performance requirements. A third specification,
Technical Data Exchange Formats, currently being developed, will establish the
coding techniques to establish a neutral format data base. These draft
specifications, the first of their type, are the comerstones for Stages I and III of
the IM1S program.

STAGE 11
Portable Computer-based Maintenance Aids System (PCMAS)

The PCMAS is an advanced development research prototype designed to demon-
strate the concept of presenting automated technical data to maintenance techni-
cians in a flightline environment. Field tests with PCMAS will examine problems
involved in using a portable computer system in a flightline environment and
establish requirements for a portable system for operational use. The PCMAS
will demonstrate several concepts that are key to the successful implementation of
IMIS.

August 6, 1986

In the shop, the PCMAS portable unit will be connected to peripherals to simulate
a maintenance workstation to demonstrate exchange of information between
ground based systems such as the Core Automated Maintenance System (CAMS),
a base-level information management system, and the portable computer. The
CAMS-like information will be stored on a large in-house computer system.
Through the workstation, the technician will access information, such as the job
location and work order, maintenance history of the aircraft, and equipment
needed.

One of the biggest advantages to the technician will be the use of small memory
cartridges to replace paper TOs. While present-day technicians may need to refer-
ence as many as ten paper-based TOs to perform a job, for example, removal and
replacement of an F-16 engine, PCMAS users will require only two or three
memory cartidges. The memory cartridges plug into the side of the PCMAS and
may be swapped interactively as they are called upon by the program.

PCMAS will demonstrate interactive diagnostics. The PCMAS device will plug
directly into the aircraft system bus, take over as bus controller, interrogate on-
board systems for stored fault data, and run manual and built-in-tests. Efficient
testing procedures will be maintained through generic diagnostic software which
insures optimal use of tests based on their run-times and fault coverage. The
software also examines diagnostic factors such as maximum aircraft downtime and
available supplies.

PCMAS will provide specialized technical information to assist in Aircraft Battle
Damage Repair (ABDR) assessment. This information will allow a single techni-
cian to accomplish the assessment task so that specialists in each area (structural,
electrical, and airplane general) are not required. An expert system on an ABDR
cartridge will supply the necessary task information. The PCMAS will also have
peel-away graphics capabilities to allow the technician to determine what is
behind the skin of the aircraft or behind different LRUs on-board the aircraft
without removing them. This helps the technician identify mission-cntical com-
ponents such as subsystems, wire bundles, hydraulic lines, and structures in the
path of the projectile and suggests quick checks to determine the status of those
components. The time savings of looking for critical components with computer
graphics versus manually cutting into the aircraft and removing hardware is obvi-
ous.

PCMAS will be used in a field test to help determine requirements for the use of
a portable computer in the flightline environment. Hardware features such as size,
weight, multiple power sources, power consumption, speed, screen resolution, and
ruggedness will be evaluated.

August 6, 1986

STAGE III
Full IMIS Demonstration

The IMIS concept consists of four major subsystems: 1) the technician’s portable
computer/display; 2) an aircraft maintenance panel connected to on-board comput-
ers and sensors; 3) a maintenance workstation connected to various ground-based
computer systems; and 4) sophisticated integration software which will combine
information from multiple sources and present the data in a consistent way to the
technician.

The technician’s primary interface with IMIS will be the extremely portable, bat-
tery powered unit which is rugged enough for flightline use (Figure 4). A library
of removable memory cartridges will store all the technical order information and
diagnostic aids needed for one weapon system. The memory cartridges will be
designed for fast, easy, and accurate updating. A high resolution, flat panel
display will clearly display data under all lighting conditions. The man-machine
interface will be designed for ease of operation to eliminate the need for the user
to have typing skills. The portable computer will have the processing power to
quickly display complex graphics and provide rapid response to the technician’s
requests. Interactive troubleshooting routines and artificial intelligence-based diag-
nostic aids will provide advice for difficult fault isolation problems. (It is impor-
tant to point out that the portable computer will function independently to display
most of the information the technician needs for on-equipment maintenance. Even
if the base-level computer systems are unavailable or the aircraft systems are mal-
functioning, the computer will be able to display technical order information and
diagnostic aids to the technician.)

Portehle Radtq Comrraxiostian

Less tren 18 (5
1 x @° x 37

N hen-velat: e
’%,.-g:«!md More ther Four "brtes
Xroe Pocof
Env ronmert Proof
Microz-ooseors
piihatondie bl e
R-ot
Higr Speec s anhics
Al leos 1 t:es

Intetaoes -~

i “

A.rborne Srstees E:'—D--D.__D._m'_:'_.i

e Conputers \ Flat Pene! Displav
Butey Jwed B R 11

lrie-ra’ Bettery
AL Power:
Aircreét Powmr

Humm-Machine titerface

Su.ted to Mentenence Environment
Integroted User=fr iendly lnterfece

Figure 4: Portable Maintenance Computer Concept
)
ORIGINAL PAGE IS
August 6, 1986 OE POOR QUALITY

ORIGINAL PAGE IS
OFE POOR QUALITY,

Avicnics Pt Engine Other
c"‘::“" Cantol Montoring Atrcraft
Bysams Bysaxs l Banscxs

Technicans ' & e ,
Mainwenance O e -} L '?m
Camputer

Figure 5: Aircraft Maintenance Panel

The technician will be able to perform most aircraft maintenance tasks without
climbing into the cockpit. An aircraft maintenance panel on the outside of the air-
craft will provide the interface with onboard systems (Figure §). The portable
computer will be able to retrieve and analyze flight information, interrogate or
control available built-in-test systems, or input test signals for diagnostics. The
interface panel will also be wused to upload or download mission
configuration/capability information.

The technician will interface with ground-based systems through a maintenance
workstation (Figure 6). The desktop workstation will include a keyboard, a pnin-

e
Qntni } Ope

jL_r

Figure 6: Maintenance Workstation

7

August 6, 1986

ter, and a computer interface. The interface will have the protocol software
required to access the other available data systems. The portable computer will
connect to the workstation and provide the display and processor for the worksta-
tion. The technician will then be able to access and exchange information with
systems like the CAMS and ATOS.

The most beneficial feature for the technician will be the integration of informa-
tion. Instead of dealing with several automated systems and accessing separate
groups of information through several devices, the technician will access all infor-
mation through one device (Figure 7). At a superficial level, the system will
integrate information by employing standard commands and display formats. At a
deeper level, through sophisticated software, the system will integrate information
from all available sources to provide a coordinated maintenance package.

The development of the full IMIS demonstration will proceed in four phases.
Dunng the first phase, a structured analysis methodology will be used to deter-
mine an information system architecture. This architecture will define require-
ments for users’ information needs, for interfaces, and for functional implementa-
tion. The second phase will be the hardware and software analysis, design, and
review. Hardware fabrication and software programming, along with system tests
and reviews, will occur during the third phase. Finally, in the fourth phase, the
system will be evaluated in the operational environment by Air Force maintenance
technicians. The product of the IMIS effort will be field tested and validated so
that specifications for implementing this maintenance concept on Air Force
weapon systems can be drafted.

Figure 7: IMIS Information Integration

August 6, 1986

Conclusion

IMIS will be the culmination of a complex, thorough research and development
project combining the skills and studies of numerous people and their projects.
IMIS will be only the beginning for this new Air Force maintenance concept.
IMIS will optimize the use of available manpower, enhance technical perfor-
mance, improve training, and reduce the support equipment and documentation
needed for deployment. It will serve as the technician’s single, integrated source
of all the technical information required to perform modern aircraft maintenance.
The Air Force Human Resources Laboratory believes that IMIS will improve
maintenance capability, productivity, and morale.

Air Force Human Resources Laboratory
Logistics and Human Factors Division
Combat Logistics Branch

AFHRL/LRC; WPAFB, OH 45433-6503
(513) 255-2606

August 6, 1986

N88-17208

SPACE SHUTTLE ONBOARD NAVIGATION CONSOLE
EXPERT/TRAINER SYSTEM

Lui Wang
NASA/SC
Mail Code FM72
Houston, TX 77058

ABSTRACT

This paper describes a software system (ONAV)
under development at NASA's Johnson Space
Center in Houston for use in enhancing operational
performance as well as training ground controllers in
monitoring onboard Space Shuttle navigation
sensors. Previous expert system development work at
NASA Johnson has shown that mainstream expert
system development must follow a mix of software
and system engineering procedures to insure
operational success and effectiveness. ONAV
development reflects this trend toward following a
structured and methodical approach to development.
The ONAV system must deal with integrated con-
ventional and expert system software, complex
interfaces, and implementation limitations due to the
target operational environment. An overview of the
onboard navigation sensor monitoring function is
presented, along with a description of guidelines
driving the development effort, requirements that the
system must meet, current progress, and future efforts.

INTRODUCTION

This paper describes a Onboard Navigation (ONAV)
software system under development at NASA's
Johnson Space Center (JSC) for use in enhancing
operational performance as well as training ground
controllers in monitoring onboard Space Shuttle
navigation sensors. Previous expert system
development work at NASA JSC has shown that
mainstream expert system development must follow a
mix of software and system engineering procedures
to ensure operational success and effectiveness.
ONAV expert system development reflects this trend
toward following a structured and methodical
approach to development. The ONAV system must
deal with integrated conventional and expert system
software, complex interfaces, and implementation
limitations due to the target operational environment.
An overview of the onboard navigation sensor
monitoring function is presented, along with a
description of guidelines driving the development
effort, requirements that the system must meet, current
progress, and future efforts.

11

Dan Bochsler
Lincom
18100 Upper Bay Rd.
Houston, TX 77058

The Guidance and Onboard Navigation section
(DM34) has a requirement to develop an ex-
pert/trainer system to assist in the training of Mission
Contro! Center (MCC) onboard ONAV console
operators during periods other than integrated
simulations. This system is expected to evolve into a
console assistant with the potential for increasing
operations support effectiveness. The Space Shuttle
Orbiter ONAV system is relatively stable and mature
with limited new design/developments anticipated.
The ONAV expert/trainer involves numerous aspects
of current and future MCC functional elements
including workstations, local area network (LAN)
interfaces, telemetry (systems) and ground (trajectory)
data, and crew and ground procedures. This situation
ensures that the ONAV expert/trainer system,
providing experience with a majority of the aspects of
anticipated MCC functions, will benefit future Space
Transportation System (STS) and Space Station
operations.

ONBOARD SPACE SHUTTLE NAVIGATION

The purpose of the ONAV system is to estimate the
Space Shuttle Orbiter's position and velocity (called
the state vector). This is done by computing or
measuring vehicle acceleration and numerically
integrating it to obtain velocity and position. At various
times, position measurements from outside sources
are used to improve the state vector estimate.

During the descent phase of Space Shuttle flight
where the vehicle comes from Earth orbit down to a
landing site, the navigation system uses several
position measurements to improve position estimates.
Drag altitude is a very rough measurement which
uses inertial measurement unit (IMU) sensed
acceleration and an atmosphere model to estimate
the altitude. Tactical air navigation (TACAN) mea-
sures the slant range and magnetic bearing from a
ground station to the Orbiter. The air data system uses
air pressure probes to measure the static atmospheric
pressure, and compute an altitude measurement
called baro altitude. Finally, the microwave scan
beam landing system (MSBLS) provides measure-
ments of slant range, azimuth angles, and elevation
angles from ground transmitter stations located near a
runway.

“RECEDING PAGE BLANK NOT FILM:D

To achieve some degree of fault tolerance, the Orbiter
contains three redundant IMUs, three TACAN
transceivers, four air data sensors, and three MSBLS
transceivers. Each piece of hardware is called a line
replaceable unit (LRU). For each of these hardware
systems there is a redundancy management (RM)
software program in the onboard Shuttle computers.
The RM has the task of choosing one set of
measurements from the available sources and
detecting and isolating failures in the hardware.

THE ONBOARD NAVIGATION CONSOLE
TASK

The job of the ONAV console monitor is to assess the
health of the various components of the ONAV
system, and recommend actions to improve or
maintain navigation accuracy. In performing this task,
at entry ONAV uses onboard navigation data
telemetered to the MCC, and the "ground state” (an
independent estimate of the orbiter state.) The ground
state is computed using ground radar measurements.
IMU monitoring is based on comparisons of IMU
attitude and velocity data, as well as comparisons
with ground computed values. Possible
recommendations include deselecting or reselecting
IMUs. TACAN monitoring is based largely on
comparisons of LRU measurements with the ground
and with each other. Possible recommendations
include using or not using TACAN data, deselecting
or reselecting a TACAN LRU, or switching to a ditfer-
ent TACAN station. ONAV has very little visibility into
the air data system, so comparison of the baro altitude
measurements with the ground is the main monitoring
tool. Possible recommendations include using or not
using baro altitude data. MSBLS monitoring is based
on comparisons of LRU measurements with the
ground and with each other. Possible recom-
mendations include forcing TACAN to override
MSBLS, or powering off a MSBLS LRU.

DEVELOPMENT GUIDELINES

This section presents a brief description of the
development guidelines that impact the ONAV expert
system.

Problem Domain

The ONAV expert system will consist of four distinct
components corresponding to the following four
Shuttle mission phases: ascent, onorbit, deorbit, and
entry.

Knowledge Base

Development of the rules for the ONAV system will be
generated and documented as four separate
knowledge bases corresponding to each mission
phase. The expert system will incorporate the concept
of modular design to logically partition both data and
rules in order to promote and enhance program
development and extensibility. The following sources
of information will be utilized, as appropriate for ex-

12

pert system knowledge base development: ONAV
console checklists, ONAV display user's guides, and
ONAV console personnel.

Development Environment

The expert system application software will be
executable in a language available in a workstation
environment. However, an expert system shell written
in C called CLIPS will be used.

Documentation

a) Expert system software code: The expert
system software will include comment text, to
the maximum extent practical, according to
proposed documentation standards for expert
systems being developed at the JSC. Further,
the comments will be enhanced through the
use of long, descriptive variable names, labels,
etc.

b) Guidelines and system requirements: This
document is a top level overview of the ONAV
development effort. This information is critical
to providing proper direction to the project.
Availability of this information not only provides
a means to communicate to others not involved
in the project, but also serves as a historical
document. For very complex and detailed
efforts, such a document serves as the first step
in maintaining traceability and configuration
control of software products.

¢) Knowledge requirements: The target audience
for this document is the knowledge domain
expert. It is a reflection of "what the system
knows" in a form as close as possible to the
expert's language.

d) Design: This document is intended for use by
the implementers of the expert system and will
serve as a guide for the coding effort. Contents
will include such things as fact formats, data
representation, rule groupings, control flow,
execution flow, interfaces, etc.

e} User's guide: The user's guide will present
procedures for preparation, operation,
monitoring, and recovery of the expert system.
The user's guide will be based upon the
design specification and is intended for the
specific use of the users. It will include
procedures for system operation directly in
support of operational tasks.

f) Test plan: The test plan defines the total scope
of the testing to be performed. It identifies the
particular levels of testing and describes the
contributing role for ensuring the reliability and
acceptance of the system. It identifies the
degree of testing and the specific functions that
are involved in the tests. The test plan is for

reviewing and ensuring that the technical
requirements are met.

Operation Modes

The ONAV expert system will operate in either of two
modes. In the first mode, referred to as "closed loop,"
the system will be used with operational data. The
operations environment will consist of integrated
simulations. When the expert system is certified as
accurate and reliable, it will be used in the actual
mission environment. In the second mode, referred to
as "open loop," the system will be used for initial level
training and familiarization purposes using existing
data tapes from several sources.

Timing

The expert system will provide outputs in a real-time
telemetry/trajectory environment and system timing
will be structured accordingly. Real-time data rates
will apply to the expert system as ported to the
workstation environment and not apply to
development machines, if different. The expernt system
will assume data is available at approximately 2
second intervals.

Display Definitions

The primary function of the display will be to depict
recommendations from the ONAV expert system to a
ground controller. The goal is to provide an easily
interpreted, quick-look format that shows the current
status of the overall system, the status of individual
subsystems, and recommended navigation system
actions.

DESIGN OVERVIEW

The overall environment in which the ONAV expert
system will operate is illustrated in figure 1. Although
different mission phases may have different
functional structures, as an example, the ENTRY
architecture for the expert system is depicted in figure
2. This structure results from the basic nature of the
ONAV task at the descent phase of the mission. Four
functional components of the expert system are
identified: 1) fact assertion, 2) monitoring, 3) analysis,
and 4) output. In addition, two non-expert system
components which are a part of the overall ONAV
system called "computations™ and "data preparation”
are also shown in both figures. The computations
component receives information from the operational
environment of the MCC LAN and performs various
computations such as scaling, state vector
propagation, coordinate system transformations, etc.
The prime purpose is to make information uniform in
time (i.e., homogeneous), which is not necessarily the
case with raw data from the local area network. The
data preparation component receives information
from either the operational environment or training
tapes and performs three functions: (a) collects the
information required by the expert system, (b)
performs any additional computations required on the

13

ORIGINAL PAGE IS
OF POOR QUALITY.

Gnniay
w
1 ut

figure 1

DATA
PREPARATION
il

data, and (c) filters and transforms that data into a
form suitable for the expert system. Non-discrete
numeric data are compared to thresholds and
converted to "symbolic” forms whenever possible.

The fact assertion component takes the prepared data
and puts that required by the expert system into the
expert system fact base and the remaining data into
the C software environment for background
processing and reference. The monitoring component
generates intermediate conclusions and statuses of
the individual subsystems ONAV observes and
manages. The analysis component performs an
overall assessment of the current situation taking into
account interrelationships between subsystems. The
output component controls the sending of notices
and/or recommendations to the ONAV expert system
console.

CURRENT PROGRESS AND FUTURE PLANS

The ENTRY ONAYV prototype was completed in June
87. A complete version of the ENTRY knowledge
base design is currently under development. The
ENTRY knowledge base line document was also
completed and is waiting for final publication. The
RENDEZVOUS ONAV is also well under way, a set of
nominal rules are written and currently under design
evaluation. Development work on the ascent phases
of ONAV was initiated in July.

REFERENCES

1. Onboard Navigation Ground Support
Expert/Trainer System, JSC Memorandum #
DMB3-86-32, J. Harpold, July 9. 1986.

2. "Guidelines and System Requirements For the
Onboard Navigation (ONAV) Console
Expert/Trainer System,” Mission Planning and
Analysis Division, Mission Support Directorate,
NASA Johnson Space Center, Internal Note
JSC-22433, December, 1986.

3. "Software Engineering Techniques Used to
Develop an Expert System for Automated Space
Vehicle Rendezvous," Bochsler, Daniel C., and
Mary Ann Goodwin, Proceedings of the Second
Annual Workshop on Robotics and Expert
Systems, June 1986, Instrument Society of
America, Research Triangle Park, NC.

4. "A Prototype Real-time Expert System to Monitor
Space Shuttle Rendezvous Navigation,”
Goodwin, M. A, and B. I. Talisman, Proceedings
of the Second Annual Workshop on Robotics
and Expert Systems, June 1986, Instrument
Society of America, Research Triangle Park, NC.

5. CLIPS Retference Manual, Version 3.0, July
1986, Al Section, NASA Johnson Space Center.

14

N88-17209

MPAD MCC WORKSTATION SYSTEM:
ADDAM AND EEVE

Bill Kozick, Jr.

Walt Reynolds

COMPUTER SCIENCES CORPORATION
Applied Technology Division
16511 Space Center Blvd.
TX 77058
(713) 486-8153

Houston,

Oon behalf of NASA/JSC/MSD/MPAD/FM7/Roy E. Stokes

ABSTRACT

The flight control consoles in mission

control at NASA's Johnson Space Center

(JscC) have evolved in sophistication to
the level where "expert sytems" are now
being incorporated into them as "flight
controller assistants."

This paper describes the evolution of a
gateway node, designed to obtain and redis-
tribute numerous kinds of data provided by
Mission Control computers over a laser-op-
tical network to enable rapid-prototyping
development of the above application ex-
pert systems.

This automated data distribution and man-
agement system serves as an effective buf-
fering system for assuring the necessarily
separate requirements of the operational
and developmental environments. This is
accomplished through the evolutionary en-
hancement of the gateway's ancillary mon-
itoring and control expert system that was
originally designed to "watch and react"
to system anomalies in the operational
state, but whose role has been substan-
tially expanded.

BACKGROUND

The Mission Control Center (MCC), at
NASA/JSC has traditionally provided flight
data via digital tape to applications sub-
scribers outside of the center. Although
called near-realtime data, the time delays
required to prepare the tapes limited

their use for playback and post-flight
analysis modes. A growing demand for time-
ly data during the flights necessitated

the development of a local area network
(LAN) to ship to sites remote from the MCC
the kinds of data that had only been avail-
able to the MCC realtime support laborator-
ies adjacent to the MCC.

15

A prototype laser-optical LAN was in-
stalled to test the feasibility of pro-
viding high-quality realtime and near-real-
time data to remote subscribers. Known as
the MITS LAN, its two-year test program
has proven successful, enabling the system
to be brought up to operational status.
This means that remote nodes will be able
to serve as both developmental and opera-
tional extensions of the MCC. A rigorous
system of configuration management has
been designed and is in the process of
being installed to ensure that only pro-
perly verified and validated applications
programs are maintained within the opera-
tional MCC environment.

Not surprisingly, the new concept of the
MCC distributed LAN provided a resource
that piqued the imaginations of Mission
Planning and Analysis Division (MPAD)
personnel working in the environment of
developing expert systems for use as
“"assistants to" flight controllers. They
came to view their node of the MITS LAN as
a means to both develop their prototype
programs and to eventually run them in
actual operational states. At the same
time the level of sophistication of the
anticipated programs accelerated.

Other groups within MPAD were given the
responsibility to ensure that data emana-
ting from the MCC-distributed LAN node to
MPAD were timely and of sufficient relia-
bility to ensure meaningful development of
expert systems and other application pro-
grams. A prototype data distribution and
management workstation concept was devised
in conjunction with the prototype of the
MITS LAN. This paper describes the three
phases of data workstation development for
the automated data distribution and manage-
ment (ADDAM) system and the design of an
associated monitoring and control expert
system, the Effective Evaluation Expert
(EEVE), that is responsible for ensuring
data integrity.

THE FIRST PROTOTYPE

Figure 1 depicts the initial ADDAM work-
station concept devised in conjunction
with the proof-of-concept MITS LAN. Work-
station software to accommodate one "walk-
up" user at a time was provided on a
HP9000 minicomputer. Through a series of
displays, menus and entryforms, the user
selected types of data desired and a stor-
age medium for that data (either disk
files or digital data tapes). Gateway
software was provided on the HP9000 that
serves as one of the MITS LAN nodes. The
gateway's function was to ensure that only
appropriate data requests were transmitted
to the MCC and within the correct design
frequency load limits.

The idea for the addition of an expert sys-
tem to this configuration resulted from
certain anomalies within this earliest ver-
sion of the MITS LAN. Frequent abrupt da-
ta terminations and dropouts necessitated
development of a monitoring and control
system to assess system integrity and pro-
vide remedial actions as required. Writ-
ten in the programming language LISP, the
Effective Evaluation Expert (EEVE) was run
concurrently on a Symbolics 3640 tied to
the gateway HP9000 via a direct cable/-
RS232 interface. In this simplest of
expert system configurations, EEVE
provided what could be termed "operator
emulation." Figure 2 shows "the face of
EEVE" as manifested within the graphics
environment available on the Symbolics
computer. Status update windows and mouse
activation fields were provided to enable
observation of the performance of the
expert system during operation.

Although both the MITS LAN and workstation
system prototypes proved effective, both
necessarily were limited by the proof-of-
concept design constraints. The prototype
workstation system could only serve one us-
er at a time and data could only be stored
before usage.

THE CURRENT PROTOTYPE

The increasing sophistication of the
user/application community during the test
phase of the MITS LAN prototype necessi-
tated an expansion of the working concept
of the MCC workstation system to accommo-
date their needs. Figure 3 shows the en-
hanced version of the workstation system
prototype currently under assembly. Nota-
ble in this design are increased responsi-
bilities and capabilities for all previous
processors as well as the addition of new
processors, specialized workstations, and
improved techniques for moving data and
information over the local MPAD LAN.

On the workstation side of the MPAD LAN,

16

multiple MCC Application workstations are
separate from the MCC Data Management
workstation; the latter comprising a
Britton Lee database machine hosted by a
HP9000. The data management workstation
is utilized to store data types and se-
quences for playback during specialized
analyses or during flight simulations.

Each application workstation can provide
data directly to automated applications,
particularly realtime expert systems, on a
datastream basis, through the new Enhanced
Development Environment Networked Node
(EDENN) processors in conjunction with the
expanded capabilities of the ADDAM
gateway.

On the gateway side of the local MPAD LAN,
the ADDAM processors have been upgraded to
service multiple workstations with an
expanded list of data types and varia-
tions. Within the automated maintenance
monitoring and control milieu, the EEVE
systems design role now calls for hypo-
thesis construction and testing beyond
mere operator emulation. 1In addition, the
EEVE system will be rehosted from the
Symbolics 3470 (in LISP), to the same
HP9000 containing the ADDAM processors (in
the inferencing engine/language CLIPS),
that also serves as the node terminal to
the MITS LAN.

THE ADVANCED PROTOTYPE

Even as the current prototype is under
construction, demands for increased per-
formance have been requested from both the
data provider side of the chain (the sys-
tem herein described), and the data util-
izer side (the application expert sys-
tems). Consequently the plan for an even
more advanced operational structure is now
also in preparation. Figure 4 illustrates
the increased complexity over the current
prototype.

It is important to note the addition of a
generalized communications interface tech-
nology among the gateway and the work-
stations. Called the Remote Information
Interchange Buffer (RIIB) processors, they
intermediate among the data-oriented exec-
utives (ADDAM and EEVE) and the networks
utilized to transfer data and advisories.
As such, the RIIB's serve as "session mana-
gers" on behalf of the executives within a
User Datagram Protocol/Internetwork Proto-
col (UDP/IP) networking environment. Also
planned for the RIIB's are generalized dis-
play terminal support functions that allow
for the dynamic reconfiguration of termi-
nals within the Transmission Control Pro-
gram/Internetwork Protocol (TCP/IP) net-
work environment. Figure 5 illustrates
that using the accepted International Stan-
dards Organization Open Systems Intercon-
nection Protocols (ISO OSI) network commun-

ications scheme, both ADDAM and EDENN com-
prise Application Level 7, whereas the
RIIB occupies the Session and Presentation
Levels, 5 and 6.

This new uniformity in communications en-
ables EEVE to take on the added task of
network failure response. In this mode,
EEVE can restart applications by rerouting
the users' terminals via the network to
the new hosting node. To accomplish this,
EEVE accesses the Data Management worksta-
tion database for a local configuration
management library.

Both the ADDAM and EEVE systems have full
backup versions, as shown in Figure 4,
that are fully ready to step in should the
"master" gateway/monitor fail. When the
backup EEVE senses that the current master
has failed, it promotes the backup ADDAM
to master status, reboots, and arranges
for the switchover of data and advisories
to any and all workstations waiting in
abeyance. New backup versions of ADDAM
and EEVE are then created and placed in
readiness.

Specialized versions of EEVE, called EEVE
II, have been added to the workstations to
provide the levels of interpretation of
the flight-specific environment for the
online application expert systems. This
focuses EEVE's duties on the gateway to
levels of interpretation regarding flight
control host activities and network and
performance configuration.

Importantly, this design embodies two par-
allel and interdependent means of communi-
cation as symbolized by the solid and dot-
ted lines. The solid lines, connecting
the realtime data and advisory processors,
including ADDAM and EDENN, symbolize the
autonomic neuralnet system (ANS) side of
the entire configuration. Conversely, the
dotted lines represent a "virtual LAN"
that connects EEVE, EEVE II and even the
online application expert systems and, as
such, symbolize the central neuralnet sys-
tem (CNS) side of the configuration. This
design allows the CNS to perform symbolic
processing without hindering the realtime
response of communications interfaces. It
also enables the various expert systems to
converse, negotiate, and even "argue"
about network priorities and flight envi-
ronment realities.

AN EXPERT CONVERSATION

The following scenario is presented to
illustrate the levels of interpretation
that will exist in the symbolic discourse
between application expert systems and
EEVE/EEVE II:

17

The application E/8 innocently asks
about the status of its flight (fear-
ing the worst since data is missing)
to the local EEVE II system. EEVE II
discovers that there are holes in its
fact database and makes further in-
quiries to EEVE at the gateway.

The application system would begin
with a message to the EEVE II on the
local workstation:

FROM: Application E/8: USER43

TO: EEVE II @ MCC
Workstation: FM8

(QUERY FLIGHT-STATUS)

(REQUESTOR SESSION USER43)

EDENN automatically adds the session
identifier, USER43, as the inquiry is
forwarded to EEVE II.

EEVE II consults its database,

(DATA-REQUIREMENT USER43 NRT)
(DATA-RBQUIRFMENT USER43 TR
(CYCLIC-STREAMS
(HIGH-SPEED-MISC))
(DEMAND-STREAMS
(ATTTTUDE-TIMELINE
VECTOR-ADMIN-TABLE)))
(DATA~-REQUIREMENT USER43 CAS)

(FLIGHT-LOGON USER43 FLIGHT 71-B)

and concludes that it needs to consult
EEVE at the gateway about the status
of the Near Realtime Telemetry (NRT),
trajectory (TRJ), and Calibrated
Ancillary Telemetry System (CAS) data
streams for flight 71-B.

Thus EEVE II sends the following
message to EEVE:

FROM: EEVE II @ MCC
Workstation: FMs8
TO: EEVE @ MCC Gateway

(QUERY DATA~-STREAM-STATUS FLIGHT
71-B NRT)

(QUERY DATA-STREAM-STATUS FLIGHT
71-B TRJ)

(QUERY DATA~STREAM-STATUS FLIGHT
71-B CAS)

(REQUESTOR WORKSTATION FM8)

The last fact is added by ADDAM as the
message is forwarded to EEVE.

Correspondingly, EEVE consults its
database at the gateway,
(DATA-STREAM NRT FLIGHT 71-B
STATUS ACTIVE AT 17:08)
(DATA-STREAM TRJ FLIGHT 71-B
STATUS UNKNCWN AT 17:05)
(DATA-STREAM CAS FLIGHT 71-B
STATUS PENDING AT 17:07)

(CONTINGENCY FLIGHT 71-B TRY
NO-RESFONSE AT 17:05)

(CONTINGENCY FLIGHT 71-B TR
CHECKFOINT-WARNING AT
16:58)

(CONTINGENCY FLIGHT 71-B CAS
RESTART-REQUESTED AT
17:07)

and would have to shrug its allegor-
ical shoulders if it were not for the
sudden entry of a new fact and the ex-
piration of a timer (all sensed by
ADDAM) --
(CONTINGENCY FLIGHT 71-B CAS
RESTART-ACKNCWLEDGED AT

17:10).

After a few simple rules fire EEVE
then has the following facts with
which to resolve the question:

(RESOLUTION FLIGHT 71-B CAS
RESTART-CONFIRMED AT
17:10)

(RESOLUTION FLIGHT 71-B TRT
CHECKFOINT-ASSUMED AT
17:10)

(DATA-STREAM CAS FLIGHT 71-B
STATUS IN-RESTART AT
17:10)

(DATA-STREAM TRJ FLIGHT 71-B
STATUS (CHECKFOINTED .95)
AT 17:10).

The rule operating for the pending sta-

tus on the CAS data stream is clear
enough. However, the assumed check-

point rule is obviously one of inter-
pretation -- guessing -- on the part
of EEVE. Thus EBEVE asserts that the
flight control host system supporting
the trajectory data stream must be in
the grips of a checkpoint procedure.
EEVE further notes that it does not
know this with certainty, but rather
that it feels reasonably sure (.95)
that this must be the case since a
checkpoint warning was received some
12 minutes previously.

It is not implied that EEVE is imple-
mented using fuzzy logic. EEVE simply
provides a confidence level for its de-
ductions that may or may not be used
by an EEVE II or application expert
system when making further decisions.

At any rate, EEVE returns what it
knows about flight 71-B to the FM8
workstation:

FROM: EEVE @ MCC Gateway
TO: EEVE II @ MCC
Workstation: FM8

(RESFONSE-TO WORKSTATION FM8 AT
17:10)

(DATA-STREAM-STATUS FLIGHT 71-B
NRT ACTIVE AT 17:08)

(DATA-STREAM~-STATUS FLIGHT 71-B
CAS IN-RESTART AT 17:10)

(DATA-STREAM-STATUS FLIGHT 71-B
TRJ (CHECKFOINTED .95) AT
17:10)

The EEVE II at FM8 now has enough in-
formation to respond to USER43:

FROM: EEVE II @ McCC
Workstation: FM8
TO: USER43 @ MCC

Workstation: FM8

(RESFONSE-TO SESSION USER43 AT
17:10)

(FLIGHT-STATUS FLIGHT 71-B
ACTIVE AT 17:10)

While the application system received
an answer to its question, it turnms
out that USER43 is sophisticated
enough to ask even more detailed ques-
tions:

FROM: USER43 @ McCC
Workstation: FM8

EEVE II @ MCC
Workstation:

TO:
FM8
(QUERY DATA-STREAM-STATUS TRJ)
(QUERY DATA-TYPE-STATUS
(HIGH-SPEED-MISC
VECTOR-ADMIN-TABLE NRT))
(REQUESTOR SESSION USER43).

To which EEVE II can directly respond:

FROM: EEVE II @ McCC
Workstation: FM8

TO: USER43 @ MCC
Workstation: FM8

(RESFONSE-TO SESSION USER43)
(DATA-STREAM~-STATUS FLIGHT 71-B TRJ
(CHECKPOINTED .95) AT 17:10)
(DATA-TYPE-STATUS FLIGHT 71-B
((HIGH-SPEED-MISC CYCLIC
HALTED AT 17:10)
(VECTOR-ADMIN~TABLE ON-DEMAND
HALTED AT 17:10)
(NRT' ON-DEMAND ACTIVE AT
17:08))) 1!

IN CONCLUSION

It is evident from the foregoing dialogues
that much work has yet to be done to reach
the level of sophistication implied by the
symbolic information transfer that is tak-
ing place among the expert systems. It
will be no small challenge to build the
domains of interpretation required of the
expanded EEVE and the new EEVE II's. Much
proof-of-concept testing has yet to be in-
spired and embraced. Even before the ba-
ses for interaction are established among
EEVE and the EEVE II's over the "virtual
LAN," the servicing interfaces must be
worked out between an EEVE II and the ap-
plication expert systems that reside on
its workstation. This, in itself, is a
substantial undertaking because of the
amount of time required to meet with the
application expert system designers in or-
der to understand their special needs and
requirements. One such project, currently
under way, has resulted in the requirement
for a time synchronization processor to be
added to an EDENN systemn.

Optimistically, once the central neuralnet
is in place in even rudimentary form, thus
linking all of the service and application
expert systems together, the symbolic~or-
iented design will enable a continuous and
evolutionary growth in capability as time
and resources permit.

19

ABBREVIATIONS, ACRONYMS AND TERMS USED IN
THIS PAPER

ADDAM -~ Automated Data Distribution and
Management systenm

ANS - Autonomic Neuralnet System

ATT - Attitude Table data

CAS - Calibrated Ancillary System

CcM - Configuration Management

CNS - Central Neuralnet System

CoTS - Commercial Off-The~-Shelf

DB - Database

DM - Data Manager

EDENN - Enhanced Development Environment
Networked Node

EEVE - Effective Evaluation Expert

E/S, ES- Expert System

HP9000 - Hewlett Packard minicomputer

IPp = Internetwork Protocol

IPs - Instrument Pointing System

Iso - International Standards Organi-
zation

Jsc - Johnson Space Center

LAN -~ Local Area Network

LIA - Link Level Access

Mcc - Mission Control Center

MITS - MOD-IPS-TACAN System (LAN)

MNV = Maneuver table data

MOC - Mission Operations Center

MOD - Mission Operations Directorate

MPAD - Mission Planning and Analysis
Division

MSD - Mission Support Directorate

NASA - National Aeronautics and Space
Administration

NRT - Near Realtime Telemetry data

OSI - Open Systems Interconnection
Protocols

RIIB - Remote Information Interchange
Buffer

TACAN - Tactical Air Control and Naviga-
tion system

TCP/IP - Transmission Control Program /
Internetwork Protocol

TRJ - Trajectory data

UDP - User Datagram Protocol

VAT - Vector Administration Table data

XNS - Xerox Network System

MITS

LAN

MCC
GATEHAY

HP92Re

—

MCC
WORKSTATION

HP 9000

EFFECTIVE
EVALUATION
EXPERT

(EEVED
SYMBOLICS 3640

Figure 1 - The First Prototype

20

ORIGINAL PAGE IS
OE POOR QUALITY,

- HHNHETHN)
Rty p— — — i
EFFECTIVE S|
EVALUATION
ES EXPERT A
T
SOURCES NODES CONTINGENCY RESOLUTION
MITS LAN 1 l I l 4]
FMS8 FrMé FrmM4 FM2 OPN
TRAJECTORY (TRJ) LAB IDM MCC OPN OPN L | f 41
- TM$ FM6 FM4 FM2 OPN NO DATA FROM MCC
NEAR-REAL-TIME (NRT) LAB IDM MCC OPN OPN Lron $ MINUTES l L]
REAL-TIME FM2 FM$ FM4 FM2 OPN L J L l
LOW-SPEED TRACKING (LSPD} LAB IDM MCC OPN OPN
REAL-TIME FM® FMé FM4 FM2 OPN
OPN
HIGH-SPEED TRACKING (HSPD) LR oM Mcc oM L L J
CAS LAN L L I]
REAL-TIME TELEMETRY e T M o [111]

FLIGHT-1 SENDING (OPN) (OPN) EXIT DELVE
FLIGHT-2 RECEIVING (OPN) {OPN) (OPN) ISOLATE
Click mouse on 'EXIT' to stop the program ! CsC

Figure 2 - The Face of EEVE

21

MITS
LAN

MPAD

LAN APPLICATION
HORKSTATION
EDENN
| |
E/S| |E/S

HP9 840

MCC APPLICATION
GATENAY WORKSTATION

ADDAM EDENN

I | I
EEVE E/S| |E/S

HP9880a HP9Q@@0@

DATA
MANAGEMENT
WORKSTATION ._,/

- @/
HP90800a

Figure 3 - The Current Prototype

22

MITS MCC
LAN GATENAY

== | | ADDAM

APPLICATION
WORKSTATION

E/8t

O st —e X

cas EEVE L.oee.

I v — J
— — 2ZZmOm

DATA
MANAGEMENT

HORKSTATION
RIS "/
! DM

I
B

| (2Z2ZZrm

...........

EEVE II

Figure 4 - The Advanced Prototype

23

INTERNATIONAL STANDARDS ORGANIZATION
OPEN SYSTEMS INTERCONNECTION PROTOCOLS

¥ *
ADDAM EDENN
*
RIIB
COTS COTS
(%)
UDP TCP
COTS
(%)
IP
COTS
HP LLA (I)
COTS§
XNS 1.0

¥ CUSTOM BUILT

Figure 5 - The

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATALINK

PHYSICAL

IS0 0SI Network Communications Model

24

N88-17210

KNOWLEDGE BASED
JET ENGINE DIAGNOSTICS

Timothy G. Jellison and Ronald L. De Hoff
Systems Control Technology, Inc.
Palo Alto, CA 94304
(415) 494-2233

ABSTRACT

A fielded expert system automates equipment
fault isolation and recommends corrective
maintenance action for Air Force jet engines. The
knowledge based diagnostics tool was developed as
an expert system interface to the Comprehensive
Engine Management System, Increment IV (CEMS
IV), the standard Air Force base level maintenance
decision support system. XMAN™, the Expert
Maintenance Tool, automates procedures for
troubleshooting equipment faults, provides a facility
for interactive user training, and fits within a
diagnostics information feedback loop to improve the
troubleshooting and equipment maintenance
processes. The application of expert diagnostics to
the Air Force A-10A aircraft TF-34 engine equipped
with the Turbine Engine Monitor System (TEMS) is
presented.

INTRODUCTION

XMAN is a knowledge-based software tool
designed for advanced diagnostics support of
complex aeromechanical equipment. Developed as
an expert user interface to a large, historical
maintenance database, XMAN automates procedures
for troubleshooting equipment fauits. The expert
maintenance tool has been field tested and is
operationally supporting flightline maintenance
diagnostics for the Air Force A-10A weapon system.

XMAN represents a significant step forward in
the evolution of maintenance information and
integrated diagnostics systems. A means of
improving the diagnostics process is provided
through visibility into troubleshooting performed at the
equipment level and feedback of information to the
equipment manager. Interactive user training is
provided in addition to the automation of the
maintenance diagnostics function. The user remains
a key factor in the equipment diagnostics process.
Training and user acceptance of the expert system
are facilitated by keeping the technician in the
troubleshooting loop, while providing explicit
diagnostics guidance and allowing ready access to
data pertinent to the specific equipment fault.

Presented is a summary of troubleshooting
performed by XMAN during its evaluation period and
initial operations at eight Air Force A-10A bases. The
specific application addressed is that of the TF-34 jet
engine equipped with the Turbine Engine Monitor
System (TEMS). Under Air Force contract, XMAN is
the expert system interface to the Comprehensive
Engine Management System Increment IV (CEMS
IV), Engine Diagnostics and Trending (ED & T). This
interface is discussed and a typical troubleshooting
session presented. Design concepts underlying the
expert system architecture are highlighted. The
potential for expansion of XMAN to other
aeromechanical equipment is addressed.

EVOLUTION OF XMAN AS AN AUTOMATED
DIAGNOSTICS TOOL

The origins of XMAN date back to the early
stages of the CEMS IV program (see Figure 1).
CEMS 1V is the standard Air Force jet engine
management system for maintenance decision
support. Systems Control Technology, Inc. (SCT)
developed CEMS IV under Air Force contract to
support the information intensive processes
associated with On-Condition Maintenance (OCM).
CEMS IV fuses data from a number of disparate DoD
maintenance information systems including CAMS
(Core Automated Maintenance System) and engine
specific automated monitoring systems.

T

= Ehab
== _‘ %—Q

Prototype (W81-885) {8/84-1006)

CEMS Expansion Program (10/96-Present)

XMAN Development can be
Traced Back to the Early Days of
MIMS and CEMS IV.

Figure 1

CEMS IV is an outgrowth of SCT's
Maintenance Information Management System
(MIMS™). CEMS IV integrates data acquisition and
processing functions to trend engine performance,
display graphical diagnostics data products, and flag
engine malfunctions (see Figure 2). Data are
displayed to the flightline and intermediate
maintenance technicians in a format which is easily
usable and readily accessible. Only those data that
pertain to that individual's work requirements are
displayed. The prototype CEMS 1V was evaluated in
an operational environment at Barksdale Air Force
Base, Louisiana (917th TFG, AFRES) for three and
one-half years before Air Force direction was given to
expand the system implementation. [1]

Automatic
Engine
onitoring

Com-
munication
Networking

Manuat
Engins
onltoring

Non-
Destructive
Inspection

Figure 2 CEMS IV Integrates a Number of
Disparate Maintenance

Information Functions.

CEMS IV is currently undergoing expansion to
twenty-one Air Force A-10A bases worldwide. Engine
maintenance decision support for other aircraft types
(e.g., F-16, B-1B, KC-135R, C-17) may be provided for
up to sixty bases at Air Force option. Demonstrations
of CEMS IV support have already been performed for
the F100-220 engine (F-15 and F-16 aircraft) and the
F108 engine (KC-135R aircraft). The CEMS IV
software is approximately eighty percent generic,
allowing flexibility in specific type-model-series (TMS)
engine applications.

From the early stages of operational
evaluation, it was evident that an expert system would
enhance the CEMS IV man-machine diagnostics
interface. SCT began the development of an expert
system in early 1984. Under internal research and
development funding, SCT produced an expert
system kernel which serves as the XMAN software
control system.

The software engineering principles guiding
the development of MIMS (i.e., generic, table driven
software, independent of specific hardware or
equipment applications) also led to the development
of a generalized expert system kernel. Tailoring is
carried out through a process of knowledge

26

engineering for the specific TMS engine or equipment
application. XMAN is written in LISP and is resident
on a microcomputer (PC compatible) operating under
MS-DOS.

As a software refinement under SCT's CEMS
IV contract with San Antonio Air Logistics Center (SA-
ALC), XMAN's knowledge base has been tailored to
troubleshoot and diagnose engine malfunctions on
the TF-34 engine. The troubleshooting knowledge
base is based upon the technical order (T.0.) logic
trees developed by the engine manufacturer for
analyzing engine malfunctions using CEMS V. Thus,
for the A-10A/TF-34 application, XMAN serves as a
T.O0. prompting system as well as an expert
troubleshooting tool.

TYPICAL APPLICATION

The diagnostics procedures associated with
interpreting CEMS IV data products, troubleshooting
engine alarms, and recommending corrective
maintenance action are automated by XMAN. The
expert diagnostics function is a menu option on the
CEMS IV workstation (see Figure 3).

FUIGHT LINE

e ma

MAINTENANCE
ACTIONS

XMAN
- FACTFRLE
* TROUBLESHOOTING RULES
* MAINTENANCE PROCEDURE

CEMS IV

WORKSTATION
DATA

MICRO-COMPUTER

+ TEMS DATA AND
« CEMS IV DISCREPANCIES
DISCREPANCIES
AND FACTS * MAINTENANCE ACTIONS

+ OIL ANALYSIS DATA

CEMS IV
HOST

XMAN Resides on the Same
Microcomputer as the CEMS IV
Workstation.

Figure 3

XMAN troubleshoots engine discrepancies
which are generated by both the on-aircraft engine
monitoring system (TEMS) and CEMS IV. The
discrepancies generated by TEMS are engine events
(e.g., core overspeed, turbine temperature
exceedance). TEMS-generated discrepancies are
passed down to CEMS IV and stored in the host
database. CEMS |V generates engine discrepancies
based upon abnormal performance, wearmetal trends
and parameter limit exceedances not flagged by the
TEMS.

The CEMS IV host is a Motorola 68020,

System V Unix™-based super minicomputer. The
expert system, resident on the standard Air Force

The CEMS [V host is a Motorola 68020,
System V Unix™-based super minicomputer. The
expert system, resident on the standard Air Force
microcomputer, accesses the CEMS 1V database via
a direct RS-232 link or a leased line modem. XMAN
extracts facts from the CEMS database. These facts
are transferred from the host system to the
microcomputer and stored in a troubleshooting fact
file. Troubleshooting facts and technician inputs are
used by XMAN to diagnose engine discrepancies.
Throughout the troubleshooting session, the
technician may access the CEMS |V database directly
and recall pertinent diagnostics data. The XMAN
control system links the engine discrepancies present
to the appropriate troubleshooting rule file (i.e.,
knowledge base). When troubleshooting is
completed, XMAN prompts the user with corrective
maintenance procedures. [2]

roubleshooting a Rising Wearmetal

A typical equipment discrepancy summary
produced by XMAN upon analysis of the CEMS IV
database is shown in Figure 4. Shown in this
summary are the following:

a reference number for each discrepancy;
the equipment serial number (ESN);

the aircraft location;

the equipment discrepancy; and

the date of the discrepancy.

capop

in this example, an engine alarm generated by
a rising oil wearmetal trend is analyzed. CEMS IV
has forecast that the iron concentration in engine
GE205293 is due to exceed the allowable limit.

EQUIPNENT DISCREPANCY
REF ESH LOCATICH DISCREPANCY

| GE2B3012 A770211-1 NFTR FORCASTD BELOW LINIT (CEMS) 87JUN!
2 GE205137 A750262-1 LEYEL 1 TENS:NF VIBS - LEY 1 87HAY29
3 (E205233 A750300-2 FE FORCASTD ABOVE LINIT (CENS) 87MAY2Y
4 GE205317 A760550-1 LEVEL | TEMS:SLOY START 87MRY22
J GE206512 A750264-2 FFGT (FFG .THD) ABOYE LIN (CENS) §7JUNSI

SUNKRRY

Please select a REF number)

Figure 4 The Equipment Discrepancy
Summary Indicates Alarms Which
Require Troubleshooting.
The technician initiates the XMAN

troubleshooting session by entering the equipment
discrepancy reference number (in this case, 3). Once
selected, XMAN activates the appropriate fact file and
decision tree (i.e., rule file) corresponding to this
engine problem.

27

An XMAN troubleshooting display is shown in
Figure 5. In the middle window of this display, XMAN
asserts facts derived from the CEMS |V database.
Troubleshooting questions are posed along with
answers automatically derived from the CEMS IV
historical database and the user's affirmation or
rejection.

RLRR; #33 EXPERT TRUURLESHOOTER — — T H736308H-]
l ED/CEMS DETECTED MALFUNCTION - €091 NODE: BIE
TROH_CFE) COMCENTRATION FORECRSTED OYER LINIT

ASSERTIONS:

to 15 it possible that FE DRTR SCATTER caused the alara ? XHAN: WO

USER:

2. Vas maintenance (for exanple, an oil change) done prior RNAN: KO

to this alara and is the FE concentralion RETURNING t¢ USER:

Lhe level found BEFORE the NAINTENANCE ?

3, Are CORE YIBRATION levels INCREASING in any of the KUAN: YES

channels? USER: P

RCTIOR:

Borescope the engine compressor and high pressure turbine
(KPT) according to Lhe procedures contained in 1,0,
18-18A-2-7INS-1. Return to XNAN wpon completion,

| IS
YPress RETURN to continue,

[ETATTTHARISN

The Technician Interacts with
XMAN Through the Expert
Troubleshooter Display.

Figure 5

In this example, the XMAN fact generator has
asserted that erratic data did not cause the alarm.
Following the XMAN assertion, the technician is
asked to accept or reject this automated analysis of
CEMS IV data. Since the technician in this example
is relatively new to automated engine diagnostics, he
asks for help in interpreting data scatter. The user
presses <HELP> on his keyboard. XMAN responds
with the graphical display shown in Figure 6.
Typically, several levels of HELP complexity are
available {0 the maintenance technician. The
complexity ranges from high-level descriptions to
graphical displays highlighted by inverse video and
pointing arrows. By pressing the <RETURN> key, the
user cycles through the high-level to low-level HELP
displays.

In Figure 6, a typical wearmetal pattern is
displayed, and the text explains what to look for in
distinguishing real data trends from erratic data. The
technician presses a special function key to exit from
the HELP utility and resume XMAN troubleshooting.

Fresh with new insight into data scatter, the
user presses the <HOME> key to access the actual
CEMS |V data. The <HOME> key is dedicated to
spawning CEMS IV from the LISP environment. In
this instance, the rising trend is clearly distinguished
from data scatter (see Figure 7).

After returning to the troublesnuoting session,
the user concurs that iron data scatter did not trigger
the alarm. XMAN proceeds with the next assertion,

i.e., that corrective maintenance has not had a
positive effect on the iron trend. Again, the technician
may ask for help in interpreting the data before
responding to this question (HELP), and he may
analyze the CEMS [V data directly (HOME). In this
case, no significant maintenance action (e.g., an oil
change) was performed on this engine recently.

30T IN HEL? FOR TXPERY TRUUELESHUOVIRG 1 tdnaiae{_)

N |
2
t
L 16.9 . : : . :
) : : : : :

8.08 : : : . R——

: : s o :
L] [[9.8 g0 [N ° 2 Y e ° s ¢ ‘ M

v i
v 2258 268 2 2280 2298 2300 2318 2320
GE285433 TS0 (HRS)

Sudden changes in vearaetal concentrates are rare and may be due to
erratic data,

In Lhe exanple display shown, Lhe data has not reaained steady for
18 TS0 hours and has been erratic. The alarw then vas probably caused
by data scatter,

—

Figure 6 The XMAN Help Facility Guldes
the Technician Through the

Diagnostics Process.

1507 3650.9
.0 ;

8.8

6.8
1

1
V1248

5 : E : .
v 8,08 : : : :
L : :

0.8

'K : : ; ; ; :
1658 1668 3670 1680 3698 1768 38 e

G€28524] 180 (KRS)]
87JUNB3(1643)

Figure 7 The User May View Pertinent
Diagnostics Data by Pressing the
<HOME> Key.

Next, XMAN asserts that core vibration levels
are rising on the engine. Examination of the data
indicates that front frame and exhaust frame vibration
readings at core frequency are increasing slightly
(see Figure 8). Based upon the analysis to this point,
XMAN recommends that the technician schedule the
engine for a borescope inspection. The user is
instructed to return to XMAN upon completion of this
task.

28

TRG: TSSTHITY RISTORTEAL B TH DISPLAY T YHTYFIT-GE- 180K

[HODE= 2.8 WODE= 2.8

46,08 - J 6.88 —

‘I Lo ‘l L

0 .00 o 2.08 : : : : i

& : . ; mﬂ’ % 0 : : . : :

ETII . Ln st A o o9 RS adage |
1456 3500 3950 3606 3658 1768 3758 3458 1508 3336 Jeas 3650 3708 3730
6E285293 2EOI KRS) GE2685293 EOT (HRS)

360 :

f 4,09

o 2.00 [

'Y ‘3 . 'Z ’.

0.9
3450 3568 3558 3680 1636 1768 3738
§)

87JUNB3(1658)

Core Frequency Vibration Levels
Show Slightly Rising Trends in
the Example.

Figure 8

After completion of the borescope inspection,
the XMAN troubleshooting session is resumed, this
time in the automatic processing mode. XMAN
automatically scans down to the last assertion
previously processed. The user is asked if the
borescope revealed significant turbine or compressor
damage, and the response in this case is negative.
Figure 9 shows the recommended XMAN action for
this engine discrepancy. The engine is to be placed
on the CEMS IV WATCH list in order to keep the
engine under surveillance. The WATCH list
maintains a record of engines which require special
attention or follow-up service. CEMS IV advises the
user when a review or action is due. [n order to
facilitate access to the WATCH list, XMAN issues the
CEMS IV WATCH command line when the user
presses the <HOME> key. Further analysis is
necessary if the wearmetal reading continues on its
trend or is correlated with serious vibration increases.

ﬁmm::mmmm I N7

' ED/CENS DETECTED NALFUNCTION - COB1 HODE: EIAT

IRON (FE) CONCENTRATION FORECASTED QVER LINIT
ASSERTIONS:
4, Did the results of the BORESCOPE examination of the KNAN: PRSS
engine reveal any significant DISCREPANCIES? USER: O
ACTION:

Place the engine on the WATCH LIST, Check the engine

every 5 hours for 15 hours using the WATCK LIST funclions

Change the status of the alara to OLD
Press RETURR 1o ontinue, ERTTTMVE
Figure 9 XMAN Recommends a

Maintenance or Foliow-Up Action
Upon Completion.

URIGINAL PAGE IS
OE ROOR QUALITY

At several points in the scenario described, the
user may have responded "PASS" rather than
entering a yes or no response. This response is
programmatically equivalent to acceptance of the
XMAN assertion. However, the audit trail or journal of
the troubleshooting activity shows that the user
entered an "l Don't Know" response.

OPERATIONAL EVALUATION

An audit trail of all engine troubleshooting
performed allows visibility into actual discrepancies
processed in the field. At each base, XMAN tracks all
engine alarms analyzed locally including user
responses and recommended maintenance actions.
The entire XMAN session may be recreated using the
troubleshooting results which are captured in an
archived fact file. This archived file includes the
engine discrepancy, time, date, and user stamps,
facts generated, and user responses.

Archived engine fact files are received from the
bases periodically. Results are assimilated from all
bases in a central analysis location, and
troubleshooting effectiveness summaries are
produced. Although not yet formally implemented,
this detailed usage information may be analyzed by
the equipment manager (e.g., repair depot engine
managers) to evaluate diagnostics procedure
effectiveness on their fielded weapon systems. In
addition to high-level summaries of recommended
actions versus equipment alarms, lower level detail of
user interaction with the expert system and CEMS |V
are clearly traceable.

For the first time, the equipment manager has
actual field level troubleshooting information
available to allow improvement in maintenance
diagnostics technical orders. Further closure of the
maintenance diagnostics loop is possible through
correlation of XMAN recommended actions with
actual maintenance performed (i.e., AFTO 349
information available through the CEMS IV/CAMS
(Core Automated Maintenance System) interface.
This correlation is currently under investigation.

| i r

XMAN was installed at Barksdale Air Force
Base, Louisiana, for user evaluation and operational
testing in October 1986. A six-month evaluation
period preceded the release of XMAN to seven other
Air Force bases. These bases included Davis
Monthan AFB, Myrtle Beach AFB, England AFB,
Glenn L. Martin Airport (Maryland Air National
Guard), Nellis AFB, Sacramento Air Logistics Center,
and San Antonio Air Logistics Center. XMAN was
released for operational use in late April 1987. The
evaluation results presented focus on the user
evaluation operations at Barksdale AFB.

During eight months of use at the 917th TFG,
XMAN aided processing of over 700 engine
discrepancies. A summary of the most frequently

29

occurring CEMS IV and TEMS alarms is shown in
Figure 10. The three most frequently processed
CEMS IV alarms include:

a. Fan speed trim margin forecasted below
limit;

b. A below limit trend in corrected fan
speed versus corrected temperature;
and

C. Chromium forecasted over limit (an oil
wearmetal abnormality).

Note that a large percentage of the alarms diagnosed
did not require immediate maintenance attention.
XMAN recommended alarm deletion in these
instances. This insight into alarms inappropriately
generated allows for the possibility of fine tuning of
the CEMS and TEMS software to reduce this
undesired characteristic. Other recommended
actions based upon XMAN analysis of CEMS IV
generated alarms focused on the scheduling of
engine water washes (a problem typical of the A-
10/TF-34 due to gun gas ingestion) and engine
placement on the CEMS IV surveillance list (WATCH).

The most frequently analyzed TEMS engine
discrepancies included shifts in the interstage turbine
temperature and core flameout. Recommended
actions concentrated on checkout of the monitoring
system rather than actual engine repair. The results
analyzed are indicative of the overall excellent health
of the TF-34 engines at Barksdale which have been
supported by TEMS and CEMS IV for over five years.

TROUSLESHAOT
OTHER ALARM

REPLACE[REPAIR
TS Awp Tems

ALARM AcTion DELETE (WATCH lczig:u

MFTA FORECASTED SELOW LWSIT 234 9 s 17

NETS TREND SELOW LT 37 B 7

CR FORECASTED OVEA LIMT 9 50

LEVEL 1 TEMS:TS SHIPT 18 0 2

LAVEL 7 TEMS:NG FLAMEOUT 4 1

Figure 10 The XMAN Audit Trail Allows
Insight into Actual
Troubleshooting Performed in the
Field.

CONCLUSIONS

Integrated diagnostics, performance reliability,
and equipment maintainability are taking on
increasingly crucial roles in Department of Defense
weapon system support strategies. New methods for
providing critical maintenance and logistics
information in a timely manner and with limited user
interaction are essential. Computer programs which
embody forms of human expert problem solving
abilities offer significant supportability benefits in an
era of increasing equipment sophistication and
decreasing service personnel availability.

XMAN offers enhanced diagnostics and
interactive training in a commercially available

software package. As the services gear equipment
diagnostics programs toward portable maintenance
aids (e.g., IMIS (Integrated Maintenance Information
System)), XMAN offers a proven operational
maintenance diagnostics troubleshooting capability.
As an integrated diagnostics tool, this expert system
allows insight into actual troubleshooting performed,
evaluation of results, and the feedback loop to
improve diagnostics procedures.

REFERENCES

1. De Hoff, R.L. and L.J. Dolny, "Maintenance
Information Management System (MIMS™) -
Strategic Maintenance Decision Support”,

Maintenance Management Internatigonal, Vol. 5
(1985), pp. 31-40.

2. De Hoff, R.L., Dolny, L.J., Jellison, T.G. and N.S.
Pratt, "XMAN™ - An Expert Maintenance Tool",
AUTOTESTCON '86 Proceedings, Sept. 1986, San
Antonio, TX.

30

N88-17217

Development of a Comprehensive Software Engineering Environment

Thomas C. Hartrum
Department of Electrical and Computer Engineering
School of Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Dayton, Ohio, 45433

Abstract

The generation of a set of tools for the software lifecycle is a recur-
ring theme in the software engineering literature. The development of
such tools and their integration into a software development environ-
ment is a difficult task at best because of the magnitude (number of
variables) and the complexity (combinatorics) of the software lifecycle
process. An initial development of a global approach was initiated at
AFIT in 1982 as the Software Development Workbench (SDW). Also
other restricted environments have evolved emphasizing Ada and dis-
tributed processing. Continuing efforts focus on tool development,
tool integration, human interfacing (graphics; SADT, DFD, structure
charts, ...), data dictionaries, and testing algorithms. Current efforts
are emphasizing natural language interfaces, expert system software
development associates and distributed environments with Ada as
the target language. The current implementation of the SDW is on
a VAX-11/780 under VMS. Also, a simplified version of the SDW
has been hosted on personal computers. Other software development
tools are hosted under UNIX and are being networked through en-
gineering work stations. This paper discusses the various aspects of
AFIT’s development of software engineering environments.

Introduction

A software development environment is an integrated set of auto-
mated and interactive software development tools that aid the soft-
ware engineer in the development of quality software products. The
specific software products which are associated with the software life
-cycle include requirements definitions; design specifications; source
and executable program codes; test plans, procedures, and results; as
well as other associated documentation such as guides and manuals
of operation and maintenance of the software. By definition, software
only exists in its documentation! Thus, extensive records must be
generated, maintained, and managed to properly fulfill the software
engineering objectives. A well planned and implemented software
develapment environment can effectively assist in the generation of
reliable and maintainable computer software.

The typical software development environment includes both hard-
ware and software tools to aid the software engineer in the production
of programs. Software development environments may consist of a
minimal set of tools, such as an editor, a compiler, and a link/loader,
that support only the actual coding of software. However, the most
effective environments are those with an extensive set of powerful in-
teractive and integrated tools that support state-of-the-art method-
ologies for dealing with software from its very conception through its
eventual termination. A specific software development environment
consists of a process methodology along with given hardware and sys-
tem software, manual procedures and support personnel. The process
methodology usually involves a specific set of operations (steps) along
with conceptual tools to support these steps within the software life-
cycle phases mentioned previously.

31

Gary B. Lamont
Department of Electrical and Computer Engineering
School of Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Dayton, Ohio, 45433

The concept of an integrated software development environment
can be realized in two distinct levels. The first level deals with the
access and usage mechanisms for the interactive tools, while the sec-
ond level concerns the preservation of software development data and
the relationships between the products of the different software life
cycle stages. The first level requires that all of the component tools
be resident under one operating system and be accessible through a
common user interface. The second level dictates the need to store de-
velopment data (requirements specifications, designs, code, test plans
and procedures, manuals, etc.) in an integrated data base that pre-
serves the relationships between the products of the different life cy-
cle stages. This integration of tools and techniques at both levels is a
major objective of any software engineering environment development
effort.

The major objectives are to provide a production software devel-
opment environment for students and faculty and to generate a soft-
ware engineering research testbed. Initially the SDW provided the
overall architecture for a “complete” capability. Recently, efforts are
focusing on a distributed version of the SDW concept called System
690 in support of the software engineering laboratory course, EENG
690.

Development Lifecycle Model

The definition of the software lifecycle as supported and used by the
various environments consists of the standard six phases; require-
ments definition, preliminary design, detailed design, implementation
(coding), integration and operation and maintenance. This general
methodology is reflected in DOD Standard 2167 [1]. Documentation
must be provided within each phase to support reviews (static) and
testing (dynamic) of results associated with each activity. This ca-
pability can be provided through the use of a data dictionary and
associated data base management system. Software system correc-
tions and enhancements should flow through all previous phases for
“proper” documentation.

Note that validation and testing is not a distinct stage in this
lifecycle, but rather an activity that is performed along the entire
lifecycle. This activity involves the testing of the products of each
stage for internal consistency and completeness with the products
of the previous stages. Furthermore, the products of each stage are
validated against the user’s perception of the requirements.

The Software Development Workbench(SDW) and the distributed
environment, System 690, are developed using this software life cycle
definition with the primary objective of providing integrated and au-
tomated support. Discussion of each environment follows the stages of
its initial lifecycle. The objectives and accomplishments of each stage
of the lifecycle development are presented. The requirements defini-
tion and preliminary design stages deal with a system as it should ex-
ist in its ultimate form, whereas the detailed design, implementation,
integration, and operation stages emphasize a prototype environment
with a menu driven interface and initial tool set.

SDW Requirements and Design

The first stages of the SDW development effort {2] emphasized the
requirements definition and preliminary design of the ultimate SDW
implementation. Due to the extensive scope of this task, the target
was set at a fairly high level specification with the individual subsys-
tems specified in greater detail with the use of recursive applications
of the software life cycle.

The results of this task are a set of five primary objectives of
the SDW, thirteen specific concerns for its development [3], a func-
tional model and associated evaluation criteria, a hardware/software
configuration model, and a structure model that identifies all generic
component tool types.

Of the five objectives of the SDW, the reduction of software errors
is the first [4]. This is to be achieved by supporting and enforcing the
use of accepted software engineering principles, as well as by using
the computer to augment different testing procedures.

The SDW must also be responsive to change. Realizing that soft-
ware is a dynamic entity, the SDW must be able to support changing
requirements for its operation.

The rapid assessment of design alternatives is also quite impor-
tant. The use of simulation models and prototyping is selected more
and more to assess design operations as well as to aid in determining
the end user’s true needs.

The SDW must also be capable of providing interactive and au-
tomated documentation support. This support must emphasize the
recording, and maintenance of all software development associated
data.

Finally, the SDW must provide mechanisms to assist the software
manager in planning and tracking software development efforts.

The thirteen specific concerns also required to be addressed by the
SDW development effort are: integration, traceability, user-friendliness,
testability, pre-fabricated programming, support for the entire soft-
ware lifecycle, flexibility, consistency and completeness, explicitness
and understandability, documentation support, updateability, lan-
guage independence, and early prototyping. The first five of these

concerns are of special significance to the SDW effort. Integration is
to be realized in terms of both accessing component tools and storing
of the development data. Traceability must also be preserved between
the products of the different stages of the development effort. User-
friendliness is also a very significant concern. The SDW must utilize
the latest concepts of ergonomics in the design of its human inter-
face. This interface should be easily understandable with a simple
logical structure, well laid out display, and a simple command input
mechanism. Prefabricated programming, or the incorporation of ex-
isting software can improve development productivity. Flexibility is
required at both the environment and tool level to allow users to op-
erate in a mode comfortable to their knowledge and experience levels.
That is, the operation of the SDW must allow the user to tailor the
type of prompting, feedback, and structure {5).

A functional model of the software development process using
SADT (Structured Analysis and Design Technique) diagrams (6] was
developed in order to define the SDW process and to select those
aspects of the process that could be automated. Furthermore, a set
of evaluation criteria is established with which to judge the effective-
ness of the environment in satisfying its requirements. However, for
reasons of brevity, these topics are not discussed further.

The configuration model of the SDW shown in Figure 1 illustrates
the basic hardware/software configuration for the environment. The
SDW Executive is the primary interface and controller of the com-
ponent tools. The SDW tool set is broken down into three tool cat-
egories; cognitive tools, that extend the powers of understanding for
the software developer; notational tools, that assist in the produc-
tion and maintenance of associated documentation; and augmentive
tools, that use the powers of the computer to perform much of the
tedious testing and updating activities involved with software devel-
opment. The project data bases are the integrated data storage areas
with one allocated to each development effort. Finally, the Pre-Fab
Software Description and Product Data Bases hold the functional
descriptions and program codes of existing software modules. This
structure provides for easy retrieving and incorporation of modules
into development designs and implementations.

SOW EXECUTIVE ~a
INTERFACE T0 INTERFACE 10
PRE-FAB SW PROJECT
DATA_BASE v T DATA BASES
\ COGNITIVE 1 NOTATIONAL ! AUGMENTIVE
TOOLS + TOOLS i TOOLS

HARD COPY
GRAPHICS
DEVICE

PRE-FAB SW
DESCRIPTION
DATA BASE

SOFT COPY
GRAPHICS
DEVICE

PROJECT
A
DATA BASE

PROJECT
8
DATA BASE

== CONTROL
—— 1-WAY DATA FLOW
PRODUCT e 2-WAY DATA FLOW
DATA BASE

\ J |- INTERFACE

PRE-FAB S/W

Figure 1: SDW Configuration Model.

32

The structure model of Figure 2 illustrates the generic tool types
that are to be incorporated into the SDW. Those tool types annotated
with a single asterisk are included in the initial implementation of the
SDW, while those with two asterisks are scheduled for the second level
of implementation. Those with three asterisks are to be included
as they are developed or become available. Thus, the frameworks
for the initial and eventual realizations of the SDW are established.
With this background, a detailed design and implementation can be
realized that includes the selection of existing tools as components
and complete development of other components.

Current Implementation of the SDW

The detailed design, implementation, and integration stages of the
SDW development effort focus on the accomplishment of an initial
version of the environment. This initial version is composed of soft-
ware development tools that support the pre-implementation activ-
ities of software development as well as provide the common capa-
bilities found in most implementation oriented development environ-
ments such as editing, linking, and debugging.

The discussion of this initial version of the SDW is limited to two
topics: the selection of an initial tool set and the complete develop-
ment of the SDW Executive (SDWE) component that provides the
common access and control mechanisms required to satisfy the first
level of the integration criteria.

The tools selected for inclusion into the initial implementation of
the SDW are taken, for the most part, from one of two sources. Those
tools that specifically support the requirements specification and de-
sign activities were given by the Integrated Computer-Aided Man-
ufacturing Division of the Air Force’s Material Laboratory, Wright-
Patterson Air Force Base. The tools used to provide the rest of the
development support are the standard vendor supplied tools normally
found on the target computer (the Digital Equipment corporation’s
VAX-11/780 under the VMS operating system).

Four distinct tools are selected to support the first two phases
of software development. They are the AUTOIDEF {7], that sup-

ports the Integrated Computer-Aided Manufacturing (ICAM) Def-
inition Techniques (IDEF) {8], the SYSFLOW graphics editor [9],
and the Extended Requirements Engineering and Validation System
(EREVS) {10].

The AUTOIDEF tools support and aid in the production and
maintenance of three types of IDEF models. IDEF-O models are
used to provide a functional modelling capability which describes the
flow of data through functional processes. IDEF-1 models provide
an informational modelling technique that describes both the com-
ponents of a data entity and the relationships between data entities.
Finally, IDEF-2 models are used for dynamic modelling to simulate
transaction flows through network-like systems. The AUTOIDEF
tool greatly simplifies the production and maintenance of all three
types of models because of its flexible graphics drawing and modifi-
cation capabilities.

The SYSFLOW graphics editor is an easy to use and flexible tool.
The tools provide a basic set of graphical constructs and character
fonts, together with the capability for the user to define his own con-
structs, to provide a very flexible capability to produce and maintain a
great variety of graphical/textual documentation. This system can be
employed in generating data flow diagrams defining detailed require-
ments or it can be used to define structure diagrams as generated by
transform analysis or transaction analysis [11] of the requirements in
a data flow or SADT format.

The ICAM Decision Support System (IDSS) provides for the graph-
ical and textual input of IDEF-2 dynamics models. The results of ex-
ecuting these simulation runs are analytical reports on the simulated
system’s performance. The provisions for graphical input of models
and automatic translation into an executable format make the tool a
truly state-of-the-art facility.

The Extended Requirements Engincering and Validation System
(EREVS) was originally developed by TRW, Inc. for the Army’s Bal-
listic Missile Advanced Technology Center. EREVS provides sophisti-
cated facilities for specifying system requirements for concurrent and
real time systems, checking those requirements for consistency and
completeness, illustrating the requirements with a graphical technique

* SDW EXECUTIVE

! ']

: 4 t

. . [] L] .
Syntax-Directed Text Graphics * Help Teach Logic Path
tditor Editors Cditors Files Routines Analyzers
_{ ! I I I }
Source Code Word Statistical l;;riormance "D.aa Flow "Iest Case
Formatter Processors Pakages Monitors Analyzers Generators
¢ 4 : : ¢)}
Planning . ' Linker! "inledxc .l.).‘ i *t i
c | imension Execution
Tools ompilers Loaders Checkers Checkers Prolilers
_ I I I I 1
Info-Oriented | | “Functional || *Reqt Def) Test Result || " Symboli
) . . ymbolic
Design Tools Design Tools Tools Debuggers Comparators | [Execution Tools

l | |

¥ ¥ |

Code ‘Consistency :

Cenerators Checkers Simulators

Configuration | | Pre-Fab Sw | | £nvironmental
Managers Descrip. D8 Emulator

i

/

Project Dala Bases

Figure 2: SDW Structure Model.

33

CRIGINAL PAGE IS
OE POOR QUALITY

called R-nets, and then simulating the timing feasibility of the stated
requirements. Although specifically designed for concurrent and real
time software systems, EREVS is an effective aid in developing well
stated and feasible requirements for all types of software systems.

In addition to these tools, the SDW uses the standard VMS avail-
able tools to perform the required compiler, linker, editor, debug-
ger, comparator, and text processing functions. Moreover, DEC’s
Program Development Tools consisting f programming tools and
project management tools can easily be integrated into the SDW.
The programming tools include the language-sensitive editor (syntax-
directed), the source code analyzer, the symbolic debugger, and the
performance and coverage analyzer (PCA). The project management
.tools include the code management system(CMS), the module man-
agement system(MMS), the test manager and the common data dic-
tionary(CDD). Other DEC software products supporting software
development include their data-base management systems (DBMS,
Rdb/VMS, Datatrive), forms management system(FMS), and the ap-
plication control and management system(ACMS).

With this set of components established, the SDW Executive is
developed with common interfaces to specific tools. The SDWE is a
menu and command driven interface to all of the SDW component
tools but also provides access to all of the facilities provided by the
VMS operating system.

In order to structure the accessing of the SDW component tools,
these tools are assembled into groups by related functions. The top
level menu of the SDW allows for the selection of any of these func-
tional groups. Once a functional group is specified, all of the member
tools of that group can be accessed through a new menu.

At any level in the hierarchy formed by these menus, any of the
standard VAX DCL commands may be executed. Furthermore, mul-
tiple levels of the menu hierarchy may be traversed at any time by
simply entering the appropriate command string on a single command
line.

On-line help facilities are provided for all levels of the hierarchy.
These help facilities provide either general help on the environment,
specific help information on any of the currently accessible commands,
and access to the VMS standard help facility. Additionally, utility
functions are provided to enable/disable the automatic displaying of
current menus, to change the type of terminal in use, and to alter the
manner in which the development data is stored.

Specific SDW component tools may either by accessed through
the menu structure and command or by using special commands to
execute the tool directly, thus increasing the flexibility of the envi-
ronment.

Development data storage is provided by this implementation by
establishing isolated data storage areas for each supported develop-
ment effort. However, these data storage areas do not at present
provide for the full integration of the data that is defined by the
preservation of the relationships between the different .development
products.

The SDW Executive was also designed to be easily modifiable.
Thus, new tools may be easily incorporated into the environment.
Furthermore, a full set of documentation is provided on the SDWE.
This documentation includes a user manual, an installation guide, and
a maintenance guide that is to be used to modify and tune the envi-
ronment for specific applications. The SDW is currently installed on
the AFIT research VAX-11/780. Users have found the environment
to be very easy to learn and use.

Expert Systems and Software Engineering

The integration of artificial intelligence concepts into software engi-
neering environments currently focuses on expert systems. Specific
expert subsystems must be developed for each phase of the software
lifecycle to assist in design development and selection, structural for-
mulation, algorithm determination, structured programming imple-
mentation (object-oriented, abstract data types, control structure),
module and system testing and maintenance. An initial effort to-
wards defining an associated environment resulted in a modification
of the SDW executive using OPS5 for expert system inclusion [12].

34

Also, this initial design focused on the analysis and diagnosis of mod-
ules in terms of coupling and cohesion standards.

Another aspect of Al integration into software engineering envi-
ronments was the development of a natural language interface {13].
This activity generated a natural language interface called “COIN”
which uses Lisp and the Flavors package. This initial effort empha-
sized the interface to the data dictionary (DD) package mentioned
previously since the perspective user would have a considerable dia-
log with the DD in defining detailed entries and preforming queries.

Additional efforts involve the use and analysis of transformational
systems that can encompass knowledge-based capabilities for software
production. Example efforts include the Knowledge-based Software
Assistant (KBSA) and REFINE, a wide spectrum language for the
development phases of the software lifecycle. Incorporation of wide-
spectrum languages into a software environment may be feasible and
economical which could be part of environment enhancements.

SDW Enhancements

The first enhancement is to extend and refine the SDW tool set to
provide a full array of capabilities to support the entire software life
cycle. This tool set must also be refined so that only those tools that
are truly effective and useful remain part of the environment. Also,
a user should be able to specify that only a certain sequence of tools
be used in a given project and the SDW would provide only that
environment, such as for Ada real-time applications.

The Pre-Fab Software Description and Product Data Bases must
be completely developed and populated to support the prefabricated
programming concept. After the establishment of a fairly static tool
set, a schema for the Project Data Bases can be developed. These
data bases will hold all of the development data for the products of
each software development effort as well as the relationships between
the different products of each effort. An initial project in this regard
generated a prototype data dictionary [14] for the SDW using the
DBMS Ingress. This effort was further enhanced with the System
690 project under the UNIX operating system.

The scope of the support provided by the SDW is also to be ex-
panded to aid the software development manager in planning and
tracking the development effort. Responses to queries on the Project
Data Bases will provide the software development manager with near
real time feedback on the status of the development effort.

The current implementation of the SDW is quite flexible and an
easy to use aid for the development of quality software products.
This initial implementation provides extensive support for the pre-
implementation stages of software development. The environment
effectively increases the cognitive and notational powers of the soft-
ware developer.

The ultimate implementation of the environment will support the
entire software development life cycle. Much of the tedious consis-
tency and completeness testing of software will be automated in this
environment. Furthermore, provisions will be included to store and
maintain all development data in a fashion that preserves traceability
between the products of the different life cycle stages. Such an envi-
ronment would be a significant breakthrough in the production and
maintenance of quality software systems.

Distributed SE Environment

Using some of the SDW concepts, a distributed software develop-
ment environment called SYSTEM 690 is being developed to support
classroom and research programming projects as well as research into
environment issues. SYSTEM 690 addresses the same objectives of
the SDW but in a distributed environment. The computer environ-
ment used by SYSTEM 690 is both heterogeneous and quite extensive.
Most of the software development is done on a network of VAXes and
Sun workstations running Unix and interconnected by a TCP/IP Eth-
ernet, and on a series of DEC VAXes and MicroVAXes interconnected
by DECNET. The two networks are interconnected by a gateway. All

of these systems are also accessible via a Gandalf RS-232 switch that
is connected to a variety of terminals and PCs in offices and labs,
and through dial-up lines to any number of home computers. Soft-
ware development is performed on these computers under a variety of
operating systems using Ada, C, Pascal, Lisp, Prolog, Fortran, and
assembly language.

In SYSTEM 690, specific emphasis is placed on performance mon-
itoring and analysis to provide needed data in such areas as tool per-
formance, tool usage, user acceptance, and the nature of the workload,
both in terms of the size of data and frequency of use of the tools.

Methodology

In order to put a production software system in operation and to de-
velop tools to support that system, the methodology selected was that
.mentioned in the SDW discussion, namely the use of DOD Standard
2167 and the ICAM program structure. Again, this methodology
was selected with the goal of supporting the automation of the soft-
ware development process, and is centered around the comprehensive
data dictionary system that documents all aspects of the lifecycle
as discussed previously. Each phase of the lifecycle requires its own
data dictionary entities, an action entity and a data entity. Figure 3
shows an example of the information contained .in these entries for
the design phase. A central concept is that the data dictionary pro-
vides the complete definition of the entire development. In each of
the three major phases, however, some form of graphical representa-
tion provides a more human understandable means of generating and
viewing the data dictionary information. Thus the IDEF model was

chosen as developed under the ICAM program. Figure 4 shows a typ-
ical analysis diagram. The underlying abstract data is stored as two
types of data dictionary entries: one for each activily (each box on
the diagrams) and one for each data element (each arrow on the dia-
grams). Information relating to the graphical layout of the structured
analysis diagram is not considered part of the requirements analysis
information, and is not included in the data dictionary.

For the design phase, the primary graphical representation is a
structure chart. This is also documented by two types of data dic-
tionary entries: one for each process (each box on the diagrams) and
one for each parameter, as shown in Figure 3.

The design process used with SYSTEM 690 uses transform anal-
K ysis and transaction analysis to evolve the requirements specification
into a modular design. Detailed design is accomplished by using PDL
in the algorithm section of the process data dictionary entry. Cur-
rently this is a free form psuedo-code, but in the future will be an
Ada based PDL. Note that an Ada software engineering environment
called ARCADE is being developed with the SDW and SYSTEM 690
efforts.

Similar to the SDW, the primary graphical representation in the
implementation phase is the structure chart, representing the struc-
tural relationship between the actual code modules and showing the
actual passed variables. This is also documented by two types of data
dictionary entries: one for each module (each actual code module, sub-
routine, or function) and one for each passed variable. Of course, in
this phase there is another representation of the effort, that of the
code itself. The implementation process used is top-down coding,
with integrated testing.

Example Data Dictionary Entry for Process Example Data Dictionary Entry for Parameter
NAME: Process Message
PROJECT: NETOS-1SO
TYPE: PROCESS
NUMBER: 4.0.1
DESCRIPTION: Proceases a NETOS message.
INPUT DATA: msgptr
INPUT FLAGS: None
OUTPUT DATA: None
OUTPUT FLAGS: error2
ALJAS: PROC-MSG
COMMENT: Used in earlier design.

NAME: mess-parts

PROJECT: NETOS-ISO

TYPE: PARAMETER
DESCRIPTION: Decomposed message parameters.
DATA TYPE: Composite, C structure .
MIN VALUE: None

MAX VALUE: None

RANGE OF VALUES: None

VALUES: None

PART OF: None

COMPOSITION: SRC

CALLING PROCFESSES: Process Messages and Data DST
PROCESSES CALLED: Decompose Message SPN
Process Network 4 Messages DPN
Determine Channel Number USE
Build Queue Buffer for Qty =1 QTY

Buffer
ALIAS: Message Partas
WHERE USED: Decompose Message to Validate Parts.
COMMENT: Part of earlier design

Put Buffer in Queue

Level 4 Cleanup
ALGORITHM:

Decompose message.

If network message
Process Network 4 Messages
else
Determine channel number
Build queue buffer
Put buffer in Queue
Cleanup Level 4.
HREFERENCE: PROCESS SPOOLER MESSAGE
REFERENCE TYPE: SADT
REFERENCE: Smith's Algorithm's, pp. 23-24.
REFERENCE TYPE: Text.
VERSION: 1.1
VERSION CHANGES: Added "Level 4 Cleanup”
DATE: 11/25/85
AUTHOR: T. C. Hartrum

ALIAS: messy-parts

WHERE USED: Passed from Dump Data to Flush Buffer.
COMMENT: Part of existing library.

REFERENCE: MSG-PARTS

REFERENCE TYPE: SADT

VERSION: 1.2

VERSION CHANGES: Component USE added
DATE: 11/05/85

AUTHOR: T. C. Hartrum

CALLING PROCESS: Process Message

PROCESS CALLED: Decompose Message(parts-list)
DIRECTION: up
1/0 PARAMETER NAME: parts-list

CALLING PROCESS: Process Message

PROCESS CALLED: Process Network 4 Messages
DIRECTION: down
1/0 PARAMETER NAME: parts

CALLING PROCESS: Process Message

PROCESS CALLED: Build Queue Buffer for QTY =1
DIRECTION: down
1/0 PARAMETER NAME: params

Figure 3: Design Phase Data Dictionary Example.

Al Ezecute Rewote Function

Abatrects Thie ‘ln'rn- deconposes the setivity of the Remots Systems inte its
major Tunctions

BOTE: Thia analysis ssevaes thet o weer wishing te exccuts s function dealing
with either the Sposier Systes or the MSS wust irst estsbiish crmso xi
that systes with ¢ sprclfic ccame req 1ternate approsch
thet might be 3 be tunetien (u.g.
Cet File) to ¢ .

blish thet eomme Link tri

femote Function I vis
tea's cepadility of
T

uur-tlnl

uy funstien
ructure could be

Atz llll'ul.l. Files MNendles #ll resoke requeste te wenlpulate

sctuel 1l Ihie includes printing lees) files, storing lessl (iles om
the m33, H rnu"un files frem the WSS,
Aty Manjpulete l'll! lnflr-ltlol hll‘l'- resote wetivities
tnvolving Information ebout the files Lthemselves.
This includes requests for uss llruun !nr"nuu, and wpdating snd
querying the catalog erstem.

418 Mantpulate Cowme Links handles ol) V'I.tn requasts te setablish and
terainate cosavalcetion links te other remetss,

AUTHOR:
PROJECT:

T

YA TAL DATES -/--,n READER | I | |
~rres wev:]ou: 1 1 1 |

or.

touss ran) Smrs
yymrsorrra PO
ser,
T s (] WY
a R
B e pegy
< CAY esrAl
@ Fus o purm
Aiaarnar § oY ervsce padv 3 a t P
g : NUMBER:
”oo“ﬂl e FRECYTE REMTH Fuwc oo I -3

Figure 4: Example Structured Analysis Drawing.

SYSTEM 690 Approach

When considering an integrated environment, one can view integra-
tion from several perspectives. As shown in Figure 5, this includes in-
tegration of tools at the user-tool interface, integration between tools
within any lifecycle phase, and integration across the entire lifecycle.

User level integration includes both consistency in interacting with
the operating system (e.g. invoking tools via a menu) and consistency
with interactive tool interfacing. This involves operating system spe-
cific issues as well as keyboard and display compatibility problems.
1t is planned to integrate the SDW environment with SYSTEM 690
to provide this level of integration, but this has not been done yet
since in a heterogeneous environment a different version is required
for each system.

Integration between tools is basically a question of compatibility
of data, the ability of one tool to use the data generated by another
tool. Compatibility itself can be viewed at a number of levels. In
its most abstract form, compatibility of information is of concern.
This is the biggest bar to integrating commercial tools from different
vendors. Tools that use the same logical information may not have
file format compatibility (a problem which frequently occurs when
trying to integrate documentation from different word processors).
Finally, two tools may not even have physical data format compati-
bility. Floppy disks written on one workstation may not be readable
on a different one.

The tool-to-tool interface problem is being attacked at several
levels. Compatibility of information is being controlled through the
use of the data dictionary. File format problems are being handled
through the use of a centralized database. The data dictionary defini-
tions described earlier are decomposed into a set of third normal form
relations which are maintained using the Ingres database management
system. A data manager translates between the database and the file

36

formats of specific tools. In order to minimize the amount of trans-
lation needed, a standard file format is used for all tools developed
in-house.

Physical file format difficulties are avoided by using networking for
all file transfers. This is available to any PC or workstation with a se-
rial port using standard communication protocols, as well as between
workstations and minicomputers via the Ethernet.

Integration over the lifecycle requires appropriate tools that are
compatible with data used in two or more phases, and additional
mapping data which relates items in the two phases. Currently there
are no multi-phase tools in SYSTEM 690. It is anticipated that any
such tools will be developed in-house, so that the mapping problem
can be handled locally.

SYSTEM 690 Tools

Several classes of tools are in use or being developed for SYSTEM
690 which evolved in part from the SDW and other commercial tools.
They include generic tools applied to the software engineering area,
specialized graphical editors that allow creation or modification of
data in a more graphical problem-oriented format, static analyzers
that check various aspects of an existing design, and computer aided
design (CAD) tools, including expert system and other AI techniques,
that greatly assist the analyst or designer.

A number of old and new tools available for computers can be
used to support the software development cycle. Some of the most
useful are conventional text editors. Classically used for writing code
and documentation, their big advantage is the universal availabil-
ity and compatibility of text editors on all systems from micros to
mainframes. By defining all standard file formats to contain only
ASCII characters, a great amount of compatibility can be achieved
in a heterogeneous environment. More sophisticated word processors
are sometimes used to develop user’s manuals, reports, and other
such documentation. Here compatibility is maintained by defining a
standard format (e.g. troff or TEX).

In terms of direct support for the SYSTEM 690 methodology,
several tools have been developed to support data dictionary main-
tenance across all phases of the lifecycle. Although graphical tools
to manipulate the data dictionary are being developed, they will be
restricted to the more powerful graphics workstations. Therefore, we
have developed a fill-in-the-blank forms editor for data dictionary en-
tries that runs on a full range of computers {15]. The tool uses its
own abbreviated ASCII files to store the data. Other data dictionary
support tools include translators to convert between different file for-
mats and the relational DBMS, and utilities for printing or viewing
entries in the standard human-readable format [16].

To support the requirements analysis phase, an interactive struc-
tured analysis diagram editor is being developed on a SUN 3 work-
station {17]. This tool makes it easy for an analyst to create and
maintain such a diagram, while simultaneously updating the corre-
sponding data dictionary entries. Similarly, an interactive structure
chart editor is being developed to support the design and implemen-
tation phases.

Having all of the lifecycle data stored using a standard database
manager makes it easy to develop static analyzers, tools that can ex-
amine the existing data dictionary information for consistency within
a lifecycle phase and between phases. For the implementation phase
there is also a style checker to analyze source code for adherence to
local standards.

True computer-aided design tools are under development that will
provide more than the ability to easily enter or examine design data.
Several extensions are planned to the structured analysis diagram ed-
itor. These include the automatic placement of symbols and routing-
of lines, and software to help the analyst do the functional decompo-
sition. An initial effort along these lines is a program that examines
the data dictionary, and with interactive input from the designer an-
alyzes the coupling and cohesion in a decomposition [12]. Similar
extensions are planned to the structure chart editor. A planned ex-
tension to bridge the gap between the requirements analysis stage
and the design stage will display a structured analysis diagram in

ORIGINAL PAGE i3
DBE BOOR QUALITY

- ORIGINAL PAGE IS
hyiied OF POOR QUALITY,
r—
User
to
Tool
Integration
-
Tool 1 Tool 2 Tool 3 Tool 4 Tool 5

Tool

to

Tool
Integration

~

Lifecycle Integration

Figure 5: Types of Integration.

one window, and use transform and transaction analysis, along with

expert systems techniques, to help the designer map directly into a
structured design.

Testbed Considerations

:A second objective of SYSTEM 690 is to provide a software engineer-
ing test.bed to allow research into software engineering methodologies.
The primary emphasis to date has been to develop ways of collecting

37

data on the software engineering process. Tools are instrumented to
collect usage and performance data to allow analysis of usage pat-
terns [18] [15] [16]. The start and stop times of not only each tool,
but of specific tool subfunctions, are recorded and stored in the In-
gres database. A standard form for measuring user satisfaction with
a given tool has been developed [19]. Standard statistical analysis
packages are then used to analyze the data. A study is underway to
determine what metrics are most needed to support the analysis of
relative productivity for different software development methodolo-
gies.

Experiences and Plans

The first attempt at providing computer support was to create data
dictionary entries in human-readable format using standard text ed-
itors and to store them in a common directory on a central VAX.
Although this facilitated compatibility among the systems, the form
of the files made it difficult to analyze or control data content with
software tools.

The next version was a complete move to a centralized system.
The data dictionary database was implemented under Ingres and an
interactive editor was developed to run on the VAX that directly
interfaced with the database. Although the database greatly simpli-
fied and encouraged the development of static analyzers and other
tools, the load on the VAX from other applications slowed the editor
response time to the point that users became frustrated. This ex-
perience with user dissatisfaction with response times made it clear
that even PC level workstations are preferable for interactive tools.
The development of the forms-based editor for the PC has been well
accepted.

Most of our user experience has been in the design phase. The cor-
responding data dictionary has evolved with use and experience. We
found several cases, mostly in the area of passed parameters, where
what had been adequate for human understanding lacked the needed
precision for machine readability. This required some augmentation
of normal design techniques with rules of constraint to force a consis-
tent and non-ambiguous design.

Finally, system reliability has turned out to be a critical issue.
Although work can still be done when some components of the sys-
tem are down, it is also true that there are more things that can
-go wrong. The communications network has been our biggest prob-
lem. Although the primary network is the 10 megabyte/sec Ethernet,
the ability to use “aucp” or “kermit” over RS-232 backup links has
proved essential. Critical items, such as laser printers and formatting
software should be available on more than one machine.

The real future of the software engineering environment is in the
use of graphic workstations coupled with Al techniques to create tools
that truly aid the designer across all stages of the lifecycle. This
requires a combination of interactive tools on heterogeneous work-
stations to provide a responsive user interface coupled with larger
machines for more computationally intensive Al routines. Research
issues include the determination of where Al can be applied in the

“design process and development of the corresponding expert knowl-
edge, along with the development of techniques for integrating the
heterogeneous environment in a manner transparent to the user.

The other primary research thrust planned is to utilize the in-

strumentation of the software engineering testbed to evaluate differ-
ent software development methodologies, including rapid prototyp-
“ing and object oriented design. In addition, investigation of tools
and methodologies are needed for several specialized software devel-
opment environments. These include VHDL, database design, Al
systems, and parallel processing. Also being considered is the possi-
ble inclusion of other Computer-Aided Software Engineering (CASE)
tools into the environments where source code is available. Exam-
ples include CASE packages from Textronix and McDonnell Douglas,
DEASEL: an Expert System for Software Engineering (NASA) and
the Software Engineering Testbed (Boeing/ Carnegie Group).

References

[1) Department of Defense. Defense System Software Develop-
ment. Military Standard DOD-STD-2167, Department of De-
fense, Washington, D.C. 20301, June 1985.

[2] Steven M. Hadfield. An Interactive and Automated Soﬂw.are De-
velopment Environment. Master’s thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, December 1982. AD-
A210 920.

38

[3] L. Osterwell. Software environment research: directions for the
next five years. COMPUTER, 14(4):35-43, April 1981.

Robert L. Glass. Persistent software errors. IEEE Trans. on
Software Engineering, SE-7(2), March 1981.

(4
(3]

A. Wasserman. Automated development environments. COM-
PUTER, 14(4):7-10, April 1981.

(6

=

Douglas T. Ross. Structured analysis (sa): a language for com-
municating ideas. JEEE Transactions on Software Engineering,
SE-3(1):16-34, January 1977.

An Introduction to SADT: Structured Analysis and Design Tech-
nigque. Softech, Inc., Waltham, Mass., 1976.

SofTech, Inc. Integrated Computer-Aided Manufacturing
(ICAM) Function Modeling Manual (IDEF0). User's Man-
ual UM 110231100, Materials Laboratory, Air Force Wright
Aeronautical Laboratories, Air Force Systems Command,
Wright-Patterson AFB, OH, June 1981.

Kevin Rose. Development of Interactive Computer Graphics
Software System and Graphics Tools. Master’s thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, December
1982.

{7]

—

8]

[

[10] R. Balzer, N. Goldman, and D. Wile. On the transactional im-
plementation approach to programming. In Proceedings, 2nd

International Conf. on Software Engr., Long Beach, CA., 1976.

{11) Meilir Page-Jones. The Practical Guide to Structured Systems
Design. Yourdan Press, New York, 1980.

[12] David W. Fautheree. An Analysis Tool in a Knowledge Based
Software Engineering Environment. Master’s thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, March
1986. AD-A172 407.

[13] Stephen A. Wolfe. A Natural Language Processor and Its Appli-
cation to @ Data Dictionary System. Master’s thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, December
1985. AD-A164 026.

[14] Charles W. Thomas. An Automated/Interactive Software En-
gineering Tool to Generate Data Dictionaries. Master’s thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH,
December 1984. AD-A152 215.

[15] Jeffrey W. Foley. Design of a Data Dictionary Editor in a Dis-
tributed Software Development Environment. Master’s thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH,
June 1986. AD-Ax172 406.

(16] Charles W. Hamberger, IJr. Analysis, Definition, and Implemen-
tation of a Network-based Microcomputer Software Development
Environment for the AFIT Digital Engineering Laboratory. Mas-
ter’s thesis, Air Force Institute of Technology, Wright-Patterson
AFB, OH, March 1986. AD-A172 781.

{17} James W .Urscheler. Design of a Requirement Analysis Design
Tool Integrated with a Data Dictionary in a Distributed Software
Development Environment. Master’s thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OII, December 1986. AD-
A177 663.

[18] Thomas C. Hartrum and Charles W. Hamberger, Jr. Develop-
ment of a distributed data dictionary system for software devel-
opment. In Proc. of IEEE 1986 Nat’l Aerospace and Elec. Conf.,
Vol. 8, pages 648-655, Dayton, OH, May 1986.

(19

-

Thomas C. Mallary. Design of the Human-Computer Interface
for a Computer Aided Design Tool for the Normalization of Rela-
tions. Master’s thesis, Air Force Institute of Technology, Wright-
Patterson AFB, OH, December 1985. AD-A164 100.

N8 8-17212

Simplifying the Construction of
Domain-Specific Automatic Programming Systems:
The NASA Automated Software Development
Workstation Project

Bradley P. Allen
Peter L. Holtzman

Inference Corporation
5300 W. Century Blvd.
Los Angeles, CA 90045

Abstract

We provide an overview of the Automated Software
Development Workstation Project, an effort to explore

knowledge-based approaches to increasing software
productivity. The project focuses on applying the
concept of domain-specific automatic programming

systems (D-SAPSs) to application domains at NASA’s
Johnson Space Center. We describe a version of a D-
SAPS developed in the Phase 1 of the project for the
domain of Space Station momentum management, and
discuss how problems encountered during its
implementation have led us to concentrate our efforts on
simplifying the process of building and extending such
systems. We propose to do this by attacking three
observed bottlenecks in the D-SAPS development process
through the increased automation of the acquisition of
programming knowledge and the use of an object-
oriented development methodology at all stages of
program design. We discuss how these ideas are being
implemented in the Bauhaus, a prototype CASE
workstation for D-SAPS development.

1. Increasing software productivity
through domain-specific automatic
programming

Software development has come under criticism as an
increasingly serious bottleneck in the construction of
complex automated systems. Increasing the reuse of
software designs and components has been viewed as an
this problem, possibly

important way to address

increasing productivity by an order of magnitude or

more [9]. A promising approach to achieving software
reusability is through domain-specific automatic
programmang.

39

Domain-specific automatic programming systems (D-
SAPS) use application domain knowledge to automate
the refinement of a program description (written in a
high-level domain language) into compilable code
(written in a procedural target language) [1]. D-SAPSs
can be distinguished from the more traditional domain-
independent automatic programming systems in that the
specification of the program is in a domain-specific
language accessible to an end user, rather than a formal
specification language (e.g. the predicate calculus with
equality). Application generators of the type used in
business report generation (e.g. Focus and DBASE-II) are
examples of D-SAPSs in which the refinement process is
completely automatic and implemented procedurally
[10]. More complex domains can be handled if the user
is allowed to interact with and guide the refinement
process. Prototype knowledge-based systems that
support user interaction and which work for practical
application domains have been successfully developed

(e.g. Draco [16], #NIX [3], and KBEmacs (25]).

2. The Automated Software Development
Workstation Project
Since the fall of 1985, Inference Corporation has been
involved in an effort, sponsored by NASA’'s Lyndon
B. Johnson Space Center, to explore the applicability of
programming to NASA

domain-specific automatic

software development efforts. Phase I of the project

focused on the development of a D-SAPS for the domain

‘of Space Station momentum management {19]. During

Phase I, A prototype D-SAPS was constructed,
comprised of:
e a components catalog of FORTRAN

subroutines used in the construction of Space
Station orbital simulations;

e a design catalog of programs implemented
using the system;

e a interactive graphical design system using a
dataflow specification language for design
editing and components composition;

e code generators for component interfaces,
numerical subroutines and main programs;

and

e a rule-based expert that:

o proposed refinements for
unimplemented modules in the dataflow
specification;

o flagged inconsistencies at manually-
specified component interfaces; and

o suggested possible workarounds to

"patch" inconsistencies (e.g. coordinate
system conversion routines).
The system was implemented by hand, to serve as a
model for the implementation of similar D-SAPS for
NASA The functionality and

other domains.

performance of the prototype was adequate to
demonstrate the applicability of the D-SAPS approach
to software development at NASA JSC. However,
reflecting on our experience in building this system led
us to be in accord with other D-SAPS developers in

noting that:

e "domain analysis and design is very hard"
(16]; and

¢ "domain-specific systems can be quite useful
within their range of application, but the
range is often quite narrow" [2].

We feel that these two issues must be addressed if D-
SAPSs are to play a significant role in future software
development environments. Therefore, in Phase II of the

project, we are attempting to address the bottlenecks in

40

the D-SAPS development process that lead to these

observations.

3. Addressing the bottlenecks in D-SAPS
development
We have focused on three bottlenecks in the D-SAPS
development process that were observed during the

development of the Phase I system:

e developing a domain language;

¢ describing design refinements and constraints;
and

e describing the generation of target language
code from a sufficiently detailed program
description.

We plan to reduce the effort spent on each of these tasks
by:
e automating the programming knowledge

acquisition process; and

e using an object-oriented development
methodology at all stages of the program
design process.

We are currently implementing a knowledge-based D-
SAPS development workstation, called the Bauhaus, that
will embody these two approaches. We now describe how
the design of the Bauhaus addresses the perceived

bottlenecks.

3.1. Automating the programming knowledge
acquisi'tion process

By structuring the design process so that the types of
knowledge required are made explicit, the knowledge
acquisition process can be made simpler [14], and the
resulting knowledge base easier to maintain [20]. To this
end we are using a problem solving architecture based
of RIME [24] and SOAR [12]
implemented using the ART expert system building tool

that the systems,

[11]. This architecture allows us to organize design

knowledge into a hierarchy of problem spaces,

representing program design tasks. Each problem space

consists of a set of operators for performing the task

represented by the space. In the Bauhaus, a problem

space is associated with each program description that

the system has in its knowledge base; the task

represented by the problem space is that of refining the

program description until it is sufficiently detailed to
allow a code generator to translate it into code in the

target language. The design process in the Bauhaus

occurs in the following way:

1. Select the initial design problem: the
user copies and edits an initial program
description from the set of program
descriptions in the knowledge base using a
structure editor, making it the current
description. The initial problem space is
that associated with refining this description.

. Propose operators: the Bauhaus
determines what operators are applicable to
the current description.

. Choose an operator: the Bauhaus chooses
an operator from the proposed set using
operator preferences and constraints
associated with the problem space, and
implemented as ART production rules. User
interaction is requested when the system
reaches an tmpasse, where either no operator
is known to apply, the system is unable to
derive a preference for a specific operator, or
the system’s preferences are inconsistent [12].
This interaction takes one of two forms:

o the user chooses a proposed operator
for the system to apply; or

e the user edits the current program
description, in which case we return to
step 2.

4. Apply the chosen operator: the Bauhaus
applies the chosen operator to the current
description. The operator may:

o select a new problem space,
e recurse into a problem subspace,

o refine the current description,

e signal that the task for the problem
space is complete, or

e signal that the task cannot be successful
completed.

a1

We then return to step 2.

The design process terminates when the top-level task of
refining the initial program description is successfully
completed. This occurs when the description is detailed
enough to allow the generation of target language code
to occur. Given this problem solving architecture, we
now discuss the knowledge acquisition mechanisms used
to obtain the descriptions,

operators, operators

preferences and constraints used in the design process.

3.1.1. Acquiring descriptions

Our representation of domain objects and operations
language, in ART
schemata, that is similar to KRYPTON [17]. New

descriptions of domain objects and operations are

uses a description implemented

created from existing descriptions using the copy&edit
technique espoused by Lenat in the CYC system,
[13] and are placed in the appropriate location in a
subsumption hierarchy through an automatic classifier
8]

automatic classification reduces the effort required to

This use of description copy&edit together with

extend the domain language used to describe systems, by
fostering reuse of existing domain languages in the
creation of new domain languages. Using a subsumption
hierarchy of descriptions as the organizing framework for
the representation of objects and operations supports

user access for copy&edit actions through a retrieval-by-
reformulation browser similar in design to ARGON [18].
Retrieval-by-reformulation will permit a naive user of
the Bauhaus to find a description needed for a
copy&edit action more easily than using a tradition

query mechanism [23].

3.1.2. Acquiring operators, operator preferences,
and constraints
When the user performs a manual edit of a description
in response to an impasse, the Bauhaus will create an
operator whose condition is the current description and
whose action is the manual editing action. Operator
preferences are acquired by recording the conditions

under which a user makes a selection from a set of

operators during an impasse where no operator is

preferred. Constraints are acquired when a user
manually rejects the application of an operator, causing
the Bauhaus to backtrack to the previous problem
solving state. This type of knowledge acquisition
through the observation of manual programming steps
taken by the user can be characterized as a learning
apprentice approach [15]. In this respect, the Bauhaus is

similar to the VEXED VLSI design system [22].

3.2. Using an object-oriented development
methodology

By using object-oriented design (OOD) [5], we can
decrease the level of effort required to implement a code
generator that takes a sufficiently detailed program
description and produces compilable target language
code. This is due to the natural correspondence between
the world and its model in an object-oriented framework
[7]-

language software components and code templates and

In the Bauhaus, the world is the set of target

the model is the set of descriptions of objects and
sequences of operations in an application program.
Ada’s language level support of abstract data types and
the existence of commercially supported reusable
software component libraries constructed using OOD
principles [6] make it our first choice as a target
language in the Bauhaus system. The mapping between
the description of an program and its realization in Ada
code and the generation of the main subprogram in
which the program objects are scoped is straightforward.
We believe that the Bauhaus could easily be extended to
support other languages with similar OOD features as

target languages (e.g. Smalltalk, Objective-C, or ART).

4. System status and limitations
Implementation of the Bauhaus is currently underway
using ART running on a Symbolics Lisp machine under
the Genera 7.1 environment. Support for Ada
compilation and library management is provided by the

Symbolics Ada programming environment. -As of July

42

1987, ART-based representations for descriptions,
operators, operator preferences and constraints have
been designed, the problem solving architecture and
basic knowledge acquisition algorithms have been
designed and implemented, and the target language
reusable components library has been selected. The user
interface is currently under construction, and the
domain analysis for the demonstration domain, orbital
flight simulation, is underway. We plan to demonstrate
the use of the Bauhaus in the construction of a D-SAPS

{or this domain in the first quarter of 1988.

In the current design of the Bauhaus, there are a
number of issues relevant to D-SAPSs that we do not

address:

e Lifecycle issues: the Bauhaus is only useful
as a programming-in-the-small environment,
and ignores programming-in-the-large issues
(e.g. version control). These would have to be
addressed in a production-quality system.

Persistent object bases: the Bauhaus has
no provision for saving session state in a
more sophisticated manner than simply
saving changes out to a text file. We are
looking to work on object-oriented databases
to provide an answer here [4].

Automated algorithm synthesis: the
Bauhaus will always reach an impasse if a
programming task requires algorithm design.
However, the architecture should be
extensible to encompass this kind of problem
solving (e.g., see the work by Steier on the
Cypress-Soar and Designer-Soar algorithm
design systems [21]).

5. Conclusion

There is evidence that domain-specific automatic

programming is a viable approach to increasing software
productivity. To make this approach a practical one,
the task of building and extending D-SAPS must be
made simpler. As described above, we plan to
accomplish this by improving the knowledge acquisition
in

and software used

engineering methodologies

constructing D-SAPS. Our ultimate goal is a production-

quality system that could be described as an

"application generator generator"; i.e., a knowledge-
based environment for the construction of special-
purpose systems for the generation of applications
software by end-users. Such a system could be available
a DP/MIS

organization for use when an applications programming

to systems analysts and designers in

task occurs frequently enough to merit the creation of a

D-SAPS.

References

1. Barstow, D. "Domain-Specific Automatic
Programming". IEEE Transactions on Software
Engineering 11, 11 (November 1985).

2. Barstow, D. Artificial Intelligence and Software
Engineering. Proceedings of the 9th International
Conference on Software Engineering, IEEE, March-April,
1987.

3. Barstow, D., Duffey, R., Smoliar, S., and Vestal, S.
An overview of $NIX. Proceedings of the Second
National Conference on Artificial Intelligence, AAAI,
August, 1982.

4. Bernstein, P.A. Database System Support for
Software Engineering. Proceedings of the 9th
International Conference on Software Engineering, IEEE,
March-April, 1987.

5. Booch, G. "Object-Oriénted Development". IEEE
Transactions on Software Engincering 12, 2 (February
1986).

8. Booch, G. Software Components With Ada.
Benjamin/Cummings Publishing, 1987.

7. Bordiga, A., Greenspan, S., and Mylopoulos, J.
"Knowledge Representation as the Basis for
Requirements Specification". Computer 18, 4 (April
1985).

8. Brachman, R.J. and Levesque, H.J. The Tractability
of Subsumption in Frame-Based Description Languages.
Proceedings of the National Conference on Artificial
Intelligence, AAAI, August, 1984.

9. Horowitz, E. and Munson, J.B. "An Expansive View
of Reusable Software". IEEE Transactions on Software
Engineering 10, 5 (September 1984).

10. Horowitz, E., Kemper, A., and Narasimhan, B.
Application Generators: Ideas for Programming
Language Extensions. Proceedings of ACM’84 Annual
Conference: The Fifth Generation Challenge, ACM,
October, 1984.

43

11. Inference Corporation. ART 3.0 Reference Manual.
Inference Corporation, 1987.

12. Laird, J.E., Newell, A. and Rosenbloom, P.S.
"SOAR: An Architecture for General Intelligence".
Avtificial Intelligence 83, 1 (1987).

13. Lenat, D.B., Prakash, M., and Shepherd, M.

"CYC: Using Common Sense Knowledge To Overcome
Brittleness and Knowledge Acquisition Bottlenecks". AT
Magazine 6, 4 (Winter 1986).

14. Marcus, S., McDermott, J., and Wang, T.
Knowledge Acquisition for Constructive Systems.
Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, August, 1985.

15. Mitchell, T.M., Mahadevan, S., and Steinberg, L.I.
LEAP: A Learning Apprentice for VLSI Design.
Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, August, 1985.

16. Neighbors, JJM. "The Draco Approach to
Constructing Software from Reusable Components”.
IEEE Transactions on Software Engineering 10, 5
(September 1984).

17. Patel-Schneider, P.F. Small can be Beautiful in
Knowledge Representation. Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems,
December, 1984.

18. Patel-Schneider, P.F., Brachman, R.J., and
Levesque, H.J. ARGON: Knowledge Representation
meets [nformation Retrieval. Proceedings of the First
Conference on Applications of Artificial Intelligence,
IEEE, December, 1984.

19. Prouty, D.A. and Klahr, P. Automated Software
Development Workstation. Proceedings of the
Conference on Al for Space Applications, NASA,
November, 1986.

20. Soloway, E., Bachant, J. and Jensen, K. Assessing
the Maintainability of XCON-in-RIME: Coping with the
Problems of a VERY Large Rule Base. Proceedings of
the National Conference on Artificial Intelligence, AAAI,
July, 1987.

21. Steier, D.M., Laird, J.E., Newell, A., Rosenbloom,
P.S., Flynn, R.A., Golding, A., Polk, T.A., Shivers,
0.G., Unruh, A. and Yost, G.R. Varieties of Learning in
Soar: 1987. Proceedings of the Fourth International
Workshop on Machine Learning, June, 1987.

22. Steinberg, L.I. Design as Refinement Plus
Constraint Propagation: The VEXED Experience.
Proceedings of the National Conference on Artificial
Intelligence, AAAI, July, 1987.

23. Tou, F.N., Williams, M.D., Fikes, R., Henderson,
A., and Malone, T. RABBIT: An Intelligent Database
Assistant. Proceedings of the Second National
Conference on Artificial Intelligence, AAAI, August,
1982.

24. van de Brug, A., Bachant, J. and McDermott, J.
"The Taming of R1". IEEE Ezpert 1, 3 (Fall 1986).

25. Waters, R.C. "The Programmer’s Apprentice: A
Session with KBEmacs". IEEE Transactions on
Software Engineering 11, 11 (November 1985).

44

N88-17213

THE KNOWLEDGE-BASED SOFTWARE ASSISTANT

Lt Kevin M. Benner, USAF and Douglas A. White
Command and Control Technology Division
Rome Air Development Center
Griffiss AFB, NY 13441-5700

ABSTRACT

In 1983, Rome Air Development Center (RADC) published "Report on a
Knowledge-Based Software Assistant" [Green, et al 83]. This document brought
together key 1ideas on how artificial intelligence (AI) could be used in the
software development process. Since then RADC has embarked on the first of
three contract iterations to develop both a Knowledge-Based Software Assistant
(KBSA) and the enabling supporting technologies which are necessary. KBSA is a
formalized computer-assisted paradigm for the development, evolution, and
long-term maintenance of computer software. KBSA captures the history of system
evolution. It provides a corporate memory of: how parts interact, what
assumptions were made and why, the rationale behind choices, how requirements
are satisfied, and explanation of the development process. KBSA accomplishes
this through a collection of integrated dedicated facets. Their areas of
expertise are: project management, requirements, specifications,
implementation, performance, testing, and documentation.

RADC is currently in the midst of the first iteration. Facets which are now
under contract include: Requirements Assistant with Sanders Associates,
Specifications Assistant with Information Sciences 1Institute (ISI) at USC,
Performance Assistant and Project Management Assistant with Kestrel Institute,
and the KBSA Framework with Honeywell. This paper will first describe where the
KBSA program is now, four years after the initial report; secondly, describe
what RADC expects at the end of the first contract iteration; and finally,
characterize what the second and third contract iterations will look like.

INTRODUCTION

In 1983 Rome Air Development Center (RADC) published "Report on a
Knowledge-~Based Software Assistant" [3]. This document brought together key
ideas on how artificial intelligence (AI) could be used in the software
development process. Since then RADC has embarked on the first of three
contract iterations to develop both a Knowledge-Based Software Assistant (KBSA)
and the enabling supporting technologies. This paper will describe: 1) History
leading up to KBSA, 2) What is KBSA, 3) Development strategy and current status
of KBSA, and 4) Concluding remarks.

HISTORY

The KBSA research program is a natural progression of research and development
undertaken by RADC in its continuing pursuit of a solution to the well known
"software life cycle problem". This application of AI technology to the problem
of software development was a predictable outgrowth of RADC's 1longstanding
commitment to research and development directed at enhancing productivity. From
the early 1970's when RADC was championing the cause of "modern" high level
languages and "structured" implementation methodologies, a less publicized but
important track of research was being addressed on a smaller scale for the

45

development of greater formalism and abstraction for the objects and activities
belonging to the technology of software development. The publicity given to the
AI community in the late 1970's and early 1980's due to successes in building
workable expert systems and the announcement of the Fifth Generation Computer
Program of Japan, resulted in the emphasis of AI technology within RADC's
research program. This in turn led to the examination of the possibility of
applying the technology that worked so well in areas such as geological analysis
and locomotive maintenance to the problems of software development and
maintenance. This atmosphere, when coupled with the growing compilation of
results from earlier research, encouraged the selection of software development
as an application to drive and demonstrate AI technology research developments.
The particular paradigm selected and eventually identified as the KBSA was the
result of careful consideration of the state of technology as demonstrated by
prior work, and the goals and practical requirements of a system to support
software development.

Throughout the 1970's, concurrent with the major RADC projects in
language/compiler systems and programming methodologies, efforts were undertaken
which explored formalisms with which to better describe the objects and
algorithms comprising software. It was recognized that there were many flaws
with the existing manner in which programs were created and the languages in
which they were expressed. A few of the outstanding problems that were
addressed during this time included: programs could be syntactically correct
without providing the desired solution or being logically correct; and, even
with "better"™ high level lanquages, programs were incomprehensible, even to the
author with the passing of time. Each of these problems and the research
efforts addressing them had a part in exposing the members of the Command and
Control Software Technology Division to the work being performed in the world of
AI, and while simultaneously providing necessary support for some of the
important AI research ideas of the time.

The problem of logical correctness of programs was attacked in many ways.
However, the two that are important to the KBSA (even though not receiving
widespread adoption in the world of software engineering) are formal proofs of
correctness and formal specification languages. 1In late 1974 an initial effort
was undertaken to explore the applicability of formal verification methods to
existing programming languages. This process of "verifying" a program's
correctness consists of establishing by mathematical proof that whenever a
program is executed with specified input data and execution environment the
execution will terminate and upon termination the values of program variables
will meet output specifications. The foundations of formal program verification
are identical with those of a significant body of the work in automatic
programming. As might be expected, many of the same individuals are involved in
both areas of research. The need for formal specification languages was
emphasized by the difficulty of verification of programs in existing computer
languages. In 1976, research was initiated to develop a "language" that could
be used to provide formal descriptions of programs. The specification languages
resulting from this research were found to be unwieldy for extensive use by
humans and as is the case with formal program verification technology are not
known to have achieved widespread use. However, formal specifications are
particularly important to the KBSA because they provide the formalism needed to
enable reasoning about programs. Additionally, these particular research
efforts caused RADC to become involved in a progression of efforts addressing
automatic programming which continue today.

The need for a more natural and abstract method of expressing a problem solution
to a computer led to the exploration of the concept of a Very High Level
Language (VHLL). The goal of this research was to provide a 1language system
combining the capabilities of conventional languages with those of logic
programming systems enabling the wuser to program not only computational
processes in the conventional sense, but also "reasoning" processes. From this
research at Syracuse has emerged an evolving family of languages which exhibit
many of the characteristics that will be needed in the Wide Spectrum Language
(WSL) of the KBSA. This research was facilitated by the early theoretical work
of Robinson [14]) which has provided much of the foundation for logic
programming. Through this work at Syracuse University, which began in the mid
1970's, RADC has been cognizant of the potential for a software development
paradigm unlike that existing for conventional programming languages.

46

The arrival of practical diagnostic systems based on AI technology in the late
1970's led to a project to investigate the possibility of creating a
knowledge-based system that would diagnose software systems and assist in their
maintenance. The conclusion of this investigation was that this type of
diagnostic expert system would be impossible for software because of the
inadequacy of the knowledge about software in general and any software system in
particular. This initial negative result, along with the dim prospect for
immediate relief from automatic programming caused a Serious consideration of
the alternatives. The alternative perceived to have the greatest promise was
that of a knowledge-based system that did not provide total automation of the
software synthesis process, but did maintain a total record of all decisions and
activities which occurred in the creation of a software system. This system
would possess the expertise to automatically perform many of the tedious tasks
of program development, but would be guided in the application of
transformations by the human user. Communications among members of a
development organization would also be enhanced by the monitoring and reporting
capabilities provided by the knowledge-based system. These are the concepts
that were further developed and described in the 1983 report considered to be
the "defining document" of the KBSA.

WHAT IS KBSA?

The KBSA approach is a departure from the existing software engineering paradigm
in that it attempts to formalize all activities as well as products of the
software life cycle. It is a formalized computer-assisted paradigm for the
development, evolution, and long-term maintenance of computer software. KBSA
captures the history of system evolution. It provides a corporate memory of:

how parts interact, what assumptions were made and why, the rationale behind
choices, how requirements are satisfied, and explanation of the development
process. KBSA accomplishes this through a collection of integrated dedicated
facets and an underlying common framework.

KBSA has four main distinguishing features. First, the specification is
incremental, executable, and formal. Incremental means that the specifier may
gradually add more detail to the specification and is not forced to initially
describe the system in complete detail. Executable means that the specification
is "runnable™ 1like a prototype. This allows the specifier to validate the
specification against user intent by actually showing him/her the "running”
specification. Finally, formal means that the specification is expressed in a
language with precise semantics, avoiding the ambiquity of natural language.

Second, the implementation is formal, that is, all decisions made during the
implementation are captured and justified. Typically, implementation will be
done via correctness preserving transformations, thus guaranteeing by default a
verified implementation.

Third, project management policies will be formally stated and enforced by KBSA.
That is, project policy will define the relationship between various software
development objects (eq. requirements, specifications, code, test cases, bug
reports, etc.) and then be enforced by KBSA throughout the software development
process.

Fourth, and finally, maintenance will be done at the requirements and
specification level, rather than via patches to the code. That is, since
maintenance activities are normally a result of new or better defined user
requirements, it makes sense to reflect this in the requirement/specification.

In order to build a KBSA, the authors of the initial report point to the need
for specific supporting technologies. These supporting technologies fall into
four main categories: a wide spectrum language, general inferential systems,
domain specific inferential systems, and system integration.

A wide spectrum language (WSL) is a single language which provides the user with
the ability to capture the formal semantics of the system under development
regardless of the 1level of detail (or the step in the development cycle). A
wide spectrum language is both a lanquage and an environment. It must provide
uniform expressibility, regardless of what is being described (ie.

47

requirements, specifications, code, test cases, project management policy, etc).
Not only must a WSL be able to express these objects, it must do so in a way
which is consistent at all levels, both syntactically and semantically.

A general inferential system is a system which supports reasoning. In
particular, we are concerned with the overall efficiency of this reasoning, how
to capture such things as logic in inference rules and data structures, the
quality of explanation generated by the system, and the ability to apply this
inferencing power to specific domains.

Domain specific inferential systems extend general inferential systems to
include aspects unique to software development. This topic focuses on the
knowledge representation of software development objects and inference rules
and, ;n particular, how they can be formally represented and used for further
reasoning.

System integration deals with the inherent competition between facets and how a
technology base can be put together such that all phases in the software
development process are supported sufficiently.

DEVELOPMENT STRATEGY AND CURRENT STATUS OF KBSA

When the KBSA report first came out, it was clear that the supporting
technologies were not adequately developed. To address this shortfall a KBSA

was to be developed in three iterations. The first iteration was aimed at
designing the individual facets and seeing where the supporting technologies
could be pulled along. Additionally, there was a desire for an advancement of
the understanding of the software development process, particularly within this
new KBSA development paradigm. In 1line with this concept, work began on a
Framework (FW) and five (5) facets: Project Management Assistant (PMA),
Requirements Assistant (RA), Specification Assistant (SA), Performance Assistant
(PA), and Development Assistant (DA) [DA will not begin until FY 88]. Though
boundaries between facets may appear in the first iteration, they will blur in
the second iteration and disappear completely in the third iteration.

First Iteration

The results of this have been twofold. First, each facet has pulled at the
supporting technologies such that they have advanced the state of these
technologies. Universal solutions were not sought, rather solutions unique for
each facet have been found. Secondly, each facet developer has made progress in
formalizing their particular life cycle phase. This formalization has focused
both on the products of individual phases (eg. requirements, specification, and
code), but more importantly on the process of how these products came about. In
this section the basic approach and milestones of each contractor will be
described. 1Included in this description will be the formalization of the
particular life cycle phase and the impact on supporting technologies.

Work on the definition of a PMA formalism and construction of a prototype began
in 1984 [9]. Kestrel Institute was the developer. The life cycle goals of PMA
were to provide knowledge-based help to users and managers in project
communication, coordination, and task management.

The capabilities of PMA fall into three categories: project definition, project
monitoring, and user interface. Project definition consists of structuring the
project into individual tasks and then scheduling and assigning these tasks.
Once the project has been decomposed into manageable tasks, it must be
monitored. This monitoring is in the form of cost and schedule constraints.
Also included in monitoring is the enforcement of specific management policies
(eg.DoD-Std-2167, rapid prototyping, KBSA, etc.). 1In addition, PMA provides a
good user interface for project monitoring and project definition. This
interaction is in the form of direct queries/updates, Pert Charts, and Gantt
Charts.

The above capabilities were important, but would be expected of any project
management tool. What sets PMA apart from its predecessors is the

A8

expressibility and flexibility of the PMA architecture. Not only does PMA
handle user defined tasks, but it also understands their products and the
implicit relationships between them (eg. components, tasks, requirements,
specification, source code, test cases, test results, and milestones). Also
present in PMA are objects unique to programming-in-the-large (ie. versions,
configurations, derivations, releases, and people).

From a technical perspective, the advances made in PMA include: the
formalization of the software development objects enumerated above, the
development of a powerful time calculus for representing temporal relationships
between software development objects {10], and a mechanism for directly
expressing and enforcing project policies.

The work on the Requirements Assistant [2, 15] began in 1985 by Sanders
Associates. The main task of RA was to deal with the informal nature of the
requirements process. Sanders' intention was to allow the user to enter
requirements in any desired order or desired level of detail. It would be the
responsibility of RA to: 1) do the necessary bookkeeping to allow user
manipulation of requirements and 2) maintain consistency among requirements as
they become known.

RA capabilities include: support for multiple viewpoints (eg. data flow,
control flow, state transition, and functional flow diagrams), management and
smart editing tools to organize the requirements, and the ability to support
free form annotations to requirements. In addition to this, RA's wunderlying
knowledge representation, Structured Object and Constraint Language Environment
(SOCLE), enables RA to identify contradictions and generate explanations.

The main technical thrust has been on how to handle informality when trying to
build an underlying representation of the requirements. This is done by
supporting incomplete graphical descriptions at the user interface 1level, but
maintaining a consistent, though not necessarily complete, internal
representation. This is done via SOCLE that provides a truth maintenance system
which supports default reasoning, dependency tracing, and local propagation of
constraints. RA provides application specific automatic classification which is
used to 1identify missing requirements by comparing the current requirements
against "typical requirements" of a generic system (already represented within
RA's knowledge base). This comparison is then used to generate questions of the
specifier to either be sure something vital has not been left out or to gather a
justification for the difference.

The main goal of the Specification Assistant [1, 8] is to develop a formal
specification of the system under development and then to validate it against
user intent. The development of the formal specification must be supported in
an incremental fashion, modeling the way developers typically construct
specifications. The validation must be done by exposing the specification to
the user at the earliest opportunity and continued throughout the construction
process. The effort to develop a KBSA Specification Assistant began in 1985.
This work is being done at the University of Southern California- Information
Sciences Institute (ISI).

SA capabilities include: an incremental specification language which is
executable and a natural language paraphraser which will translate a given
specification into English. These capabilities have been built on top of ISI's
Wide Spectrum Language APS, and the development environment CLF. SA can
currently handle specifications of a couple pages.

The main technical issues concern: 1) identification of specification
statements as requirements or goals and the transformation of these from a high
level specification into a 1low level specification and 2) extracting and
assembling system views (ie. reusing specifications and parts of
specifications).

The distinction that ISI makes between requirements and goals is that
requirements are inviolable constraints, while goals describe general behavior
which may have exceptional cases not currently covered by the goal. With this
distinction in mind SA provides high level editing commands to further transform
the specification into a low level specification. Requirements are transformed
in a correctness preserving manner to maintain satisfaction of the requirements.

49

Goals, on the other hand, may be "compromised"” in order to handle exceptional
cases. That is, after a transformation, the meaning of a goal specification may
change.

Extracting and assembling system views deals with building up a specification
from smaller specifications (ie. reuse of other previously defined
specifications) as opposed to the top down refinement presented in the previous
paragraph. SA can combine disjoint specifications, but tools are needed to aid
in combining specifications which share common terms.

The Performance Assistant [4, 5, 6] work began at Kestrel Institute in 1985 and
is expected to run until 1990. Long term goals for a performance facet are to
guide software performance decisions at many levels in the software development
cycle, from requirements specifications in very high level programs to low level
code. The approach is to combine heuristic, symbolic, and statistical
approaches which will provide capabilities for: symbolic evaluation, data
structure analysis and advice, and algorithm design analysis and advice. This
effort is focusing on data structure selection, performance annotations of a
specification, analysis and propagation of performance information, and control
structure performance analysis.

Technical issues that have been addressed thus far are data structure selection
(DSS) using symbolic and heuristic techniques and the development of PERFORMO, a
functional specification language with set theoretic data types. PERFORMO is
similar to VAL [12], developed at MIT, and SISAL [13], developed at Lawrence
Livermore Laboratory. PERFORMO is intended primarily for DSS work, but is
sufficiently expressive to be a good initial specification language for the next
two research issues: subroutine decomposition and control flow optimization.

The basic strategy employed in DSS is to supply refinement decisions when they
are needed by the implementation generator (ideally this would be the DA). When
a refinement decision is needed, PA determines the relevant program properties
necessary to make a satisfactory selection. The relevant properties would vary
on where in the implementation the generator is. Properties refer to how a
specific variable will be used and some characteristics of it. These properties
could include: whether the variable 1is random access, ordered, enumerated,
dynamic, and/or possibly empty. Based on these properties, specific
implementation decisions can be made.

Development Assistant is the most recent facet undertaken, although contract
work has not yet begun. RADC will award the DA contract in early FY 88. The
basic thrust of this effort will be to derive an implementation from a completed
specification, automating (via automatic transformation) where possible and
capturing user supplied design decisions when needed.

The Framework [7, 11] was considered to be necessary to bring a global
perspective to KBSA. Initial work on the FW began at Honeywell Systems and
Research Center in early 1986. The goal of the Framework is twofold: 1) to
develop an integrated KBSA demonstration and 2) to propose the specification of
a KBSA framework through which all facets must interact and communicate. The
purpose of the former is to provide a concept definition that would be
intuitively obvious to the most casual observer. The purpose of the latter is
to facilitate a tightly coupled interaction between facets. The framework will
provide a common reference for each facet developer allowing the sharing of
information. Interacting with the framework will be a requirement for all
second iteration contracts. The result in the future will be a more tightly
integrated KBSA,

The main technical issues are 1) define minimum functionality which the
framework must provide to all facets, 2) define a common interface to the
framework, 3) extend the framework to a distributed environment, 4) support
programming-in-the-large concepts like configuration control, and 5) provide a
consistent user interface.

The overall results of the first iteration will be a KBSA concept demonstration
consisting of mostly loosely coupled facets with the exception of PMA and the
framework which will be tightly coupled. Each facet will exist on separate
machines and communicate via the framework. The framework will be responsible

50

for maintaining traceability between software development objects and keepipg
facets updated. Establishing the initial traceability (eg. the relationship
between requirements objects and specification objects) is the responsibility of
the involved facets. A

In the past, each facet developer has had their own problem domain in which to
work. In general these domains have been small or toy-like. For the KBSA
demonstration the problem domain will be the air traffic control problem (ATC).
This domain has the advantage of being a substantial problem with a variety of
real world issues (ie. real time requirements, data base management, user
interaction, interaction with the outside world, and changing or not well
defined requirements). The intention of the demonstration is not to solve the
ATC problem, but rather to have the ATC requirements be a driver for KBSA. The
demonstration will most likely focus on some portion of the overall ATC problem.

Second And Third Iterations

The second iteration of KBSA will begin at the completion of the framework
effort. All facets in the second iteration will interact with the framework and
thus each other. This will be done by either building individual facets in
Honeywell's framework, or more likely, individual facet developers will extend
their own frameworks (eg. REFINE, AP5, SOCLE, etc) to adhere to the framework
specification. Both are acceptable from a RADC perspective. Prospective
developers must convince an RADC that either 1) they will use the Honeywell
framework or 2) that their framework does or will soon adhere to the standard.
There will be a mechanism to allow for some deviations from the framework
specification. This is important since at the beginning of the second iteration
the framework described in the specification may not be sufficiently powerful to
implement all facets or some specific feature of the framework may preclude
functionality necessary for a particular facet. For the third iteration there
will be no exceptions.

During the second iteration, work will continue on individual life cycle phases,
while also focusing on the interaction between facets and the framework.

For the framework contract, work will address raising the functional level of
the framework. The goal is for individual facets to be concerned only with
activities unique to their respective facets, while the framework will be
responsible for all generic tasks (eg. knowledge representation, knowledge base
maintenance, communication between facets, policy enforcement, and general
inferencing capabilities).

CONCLUSION

In conclusion, there has been progress over the last four years. The question
now is, how close are we to a workable KBSA? The answer is greatly dependent
upon the framework specification which will come out of this first iteration.
If it is sufficiently powerful, we could have a workable KBSA at the end of the
second iteration. On the other hand, if most second iteration contractors have
to make generic extensions to the framework, we can not expect a workable KBSA
until the third iteration.

REFERENCES

[1] Balzer, R. et al., "Knowledge-Based Specification Assistant”,
Interim Technical Report, RADC, Griffiss AFB, NY, Dec., 1986.

[2} Czuchry, A. J. Jr., "Where's the Intelligence in the Intelligent

Assistant for Requirements Analysis?", RADC, 2nd Annual KBSA
Conference, Utica, NY, Aug 18-20, 1987.

51

[3]

[4]

[5]

[6]

(71

(8]

191

[10]

[11]

[12]

[13]

[14]

[15]

Green, C. et al., " Report on a Knowledge-Based Software
Assistant," RADC Tech. Report TR-83-195, RADC, Griffiss AFB,
NY, Aug, 1983.

Goldberg, A. and Smith, D., "Towards a Performance Assistant",
Interim Technical Report, RADC, Griffiss AFB, NY, Nov., 1986.

Goldberg, A. and Smith, D., "Performance Estimation for a
Knowledge-Based Software Assistant”, RADC, 2nd Annual KBSA
Conference, Utica, NY, Aug 18-20, 1987.

Goldberg, A., "Technical Issues for Performance Estimation",
RADC, 2nd Annual KBSA Conference, Utica, NY, Aug 18-20, 1987.

Huseth, S. and King, T., "A Common Framework for Knowledge-Based
Programming", RADC, 2nd Annual KBSA Conference, Utica, NY,
Aug 18-20, 1987.

Johnson, W. J., "Turning Ideas into Specifications",
RADC, 2nd Annual KBSA Conference, Utica, NY, Aug 18-20, 1987.

Jullig, R., et al., "KBSA-PMA Technical Report", Final Technical
Report, RADC, Griffiss, NY, Nov., 1986.

Ladkin, P., "Primitives and Units for Time Specification",
AAAI-86, Philadelphia, PA, Aug. 11- 15, 1986.

Larson, A. and Huseth, S., "KBSA Common Framework Implementation”,
RADC, 2nd Annual KBSA Conference, Utica, NY, Aug 18-20, 1987.

Robinson, J. A., "A Machine Oriented Logic Based on the Resolution
Principle", Journal of the ACM, Jan., 1965.

McGraw, J. R., "The VAL Language: Description and Analysis", ACM
Transactions on Programming Languages and Systems, Jan., 1982.

McGraw, J. R., et. al, "SISAL: Streams and Iteration in a Single
Assignment Language", Technical Report M-146, Lawrence Livermore
Laboratory, Mar., 198S5.

Sanders Associates, "Knowledge Based Requirements Assistant”,
Interim Technical Report, RADC, Griffiss AFB, NY, Mar., 1986.

52

Ng8-17214

AN INTELLIGENT TRAINING SYSTEM FOR PAYLOAD-ASSIST
MODULE DEPLOYS

R. Bowen Loftin
University of Houston-Downtown
One Main Street
Houston, TX 77002

ABSTRACT
An autonomous intelligent training system
which integrates expert system technology

with training/teaching methodologies is de-
scribed. The system was designed for use by
Mission Control Center (MCC) Flight Dynamics
Officers (FDOs) training to perform payload-as-
sist module (PAM) deploys from the orbiter.
The system (termed PD/ICAT for Payload-as-
sist module Deploys/Intelligent Computer-
Aided Training system) is composed of five
distinct components: a user interface, a domain
expert, a training session manager, a trainee
model, and a training scenario generator. A
user interface has been developed which per-
mits the trainee to access data in the same
format as it is presented on console displays in
the MCC. The interface also permits the
trainee to take actions in much the same man-
ner as a FDO in the MCC and provides the
trainee with information on the current train-
ing environment and with on-line help (if
permitted by the training session manager).
The domain expert (DeplEx for Deploy Expert)
contains the rules and procedural knowledge
needed by a FDO to carry out a PAM deploy.
DeplEx also contains "mal-rules” which permit
the identification and diagnosis of common er-
rors made by the trainee. The training session
manager (TSM) examines the actions of the
trainee and compares them with the actions of
DeplEx in order to determine appropriate re-
sponses. A unique feature of the TSM is its
ability to grant the trainee the freedom to fol-
low any valid path between two stages of the
deploy process. A trainee model is developed
for each individual using the system. The
model includes a history of the trainee's inter-
actions with the training system and provides

Lui

Wang, Paul Baffes, and Monica Rua

Artificial Intelligence Section, FM72

53

NASA/Johnson Space Center
Houston, TX 77058

evaluative data on the trainee's current skill
level. Following each trainee action, evalua-
tive assertions are made by the TSM and used
to update the trainee model. A training sce-
nario generator designs appropriate training
exercises for each trainee based on the trainee
model and the training goals. PD/ICAT is cur-
rently being tested by both experienced and
novice FDOs in order to refine the system and
determine its efficacy as a training tool. Ulti-
mately, this project will provide a vehicle for
developing a general architecture for intelli-
gent training systems together with a software
environment for creating such systems.

INTRODUCTION

The Mission Operations Directorate (MOD) at
NASA/Johnson Space Center is responsible for
the ground control of all space shuttle opera-
tions. Those operations which involve alter-
ations in the shuttle's orbit characteristics are
guided by a FDO who sits at a console in the
"front room” of the MCC. Currently, the train-
ing of the FDOs (called "fidos") in flight opera-
tions is carried out principally through the
study of flight rules, training manuals, and
"on-the-job training" (OJT) in integrated sim-
ulations. From two to four years is normally
required for a trainee FDO to be certified for
many of the tasks for which he is responsible
during shuttle missions. OJT is highly labor
intensive and presupposes the availability of
experienced personnel with both the time and
ability to train novices. As the number of ex-
perienced FDOs has been reduced through re-
tirement, transfer (especially of Air Force per-
sonnel), and promotion and as the preparation
for and actual control of missions occupies
most of the MCC's available schedule, OJT has

become increasingly difficult to deliver to
novice FDOs. As a supplement to the existing
modes of training, the Orbit Design Section
(ODS) of the MOD has requested that the Arti-
ficial Intelligence Section (AIS) of the Mission
Support Directorate assist in developing an
autonomous intelligent computer-aided train-
ing system. After extensive consultation with
ODS personnel, a particular task was chosen to
serve as a proof of concept: the deployment of
a PAM satellite from the shuttle. This task is
complex, mission-critical and requires skills
used by the experienced FDO in performing
many of the other operations which are his re-
sponsibility.

The training system is designed to aid novice
FDOs in acquiring the experience necessary to
carry out a PAM deploy in an integrated sim-
ulation. It is intended to permit extensive
practice with both nominal deploy exercises
and others containing typical problems. After
successfully completing training exercises
which contain the most difficult problems, to-
gether with realistic time constraints and dis-
tractions, the trainee should be able to suc-
cessfully complete an integrated simulation of
a PAM deploy without aid from an experi-
enced FDO. The philosophy of the PD/ICAT
system is to emulate, to the extent possible,
the behavior of an experienced FDO devoting
his full time and attention to the training of a
novice--proposing challenging training sce-
narios, monitoring and evaluating the actions
of the trainee, providing meaningful comments
in response to trainee errors, responding to
trainee requests for information and hints (if
appropriate), and remembering the strengths
and weaknesses displayed by the trainee so
that appropriate future exercises can be de-
signed.

BACKGROUND

Since the 1970's a number of academic and
industrial researchers have explored the ap-
plication of artificial intelligence concepts to
the task of teaching a variety of subjects (e.g.,
geometry, computer programming, medical
diagnosis, and electronic troubleshooting). A
body of literature is now extant on student
models and teaching/tutoring methodologies
adapted to intelligent tutoring systems in the
academic environment!. The earliest pub-
lished reports which suggested the applica-

54

tions of artificial intelligence concepts to
teaching tasks appeared in the early 1970's.2.3
Hartley and Sleeman3 actually proposed an ar-
chitecture for an intelligent tutoring system.
However, it is interesting to note that, in the
fourteen years which have passed since the
appearance of the Hartley and Sleeman pro-
posal, no agreement has been reached among
researchers on a general architecture for in-
telligent tutoring systems4. Nonetheless, a
study of the literature on intelligent tutoring
systems is an essential starting point for the
development of the elements of an intelligent
training system.

Among the more notable intelligent tutoring
systems reported to date are SOPHIES,
PROUSTS and the LISP Tutor?. The first of
these systems, SOPHIE, was developed in re-
sponse to a U.S. Air Force interest in a com-
puter-based training course in electronic trou-
bleshooting. = SOPHIE contains three major
components: an electronics expert with a gen-
eral knowledge of electronic circuits, together
with detailed knowledge about a particular
type of circuit (in SOPHIE this was an IP-28
regulated power supply); a coach which ex-
amines student inputs and decides if it is ap-
propriate to stop the student and offer advice;
and a troubleshooting expert that uses the
electronics expert to determine which possible
measurements are most useful in a particular
context. Three versions of SOPHIE were pro-
duced and used for a time but none was ever
viewed as a "finished" product. One of the
major lacks of the SOPHIE systems was a user
model. It is interesting to note that the devel-
opment of a natural language interface for SO-
PHIE represented a large portion of the total
task.

PROUST and the LISP Tutor are two well-
known intelligent tutoring systems that have
left the laboratory and found wider applica-
tions. PROUST (and its offspring, Micro-
PROUST) serves as a "debugger" for finding
nonsyntactical errors in Pascal programs
written by student programmers. The devel-
opers of PROUST claim that it is capable of
finding all of the bugs in at least seventy per-
cent of the "moderately complex" program-
ming assignments that its examines. PROUST
contains an expert Pascal programmer that can
write "good"” programs for the assignments
given to students. Bugs are found by matching

the expert's program with that of the student;
mismatches are identified as "bugs" in the stu-
dent program. This ability is contained-in the
PROUST "bug rule” component. After finding a
bug, PROUST provides an English-language de-
scription of the bug to the student, enabling
the student to correct his error. The system
cannot handle student programs that depart
radically from the programming “"style” of the
expert. The LISP Tutor is currently used to
teach the introductory Lisp course offered at
Carnegie-Mellon University. This system is
based on the ACT (historically, Adaptive Con-
trol of Thought) theory and consists of four el-
ements: a structured editor which serves as
an interface to the :ystem for students, an ex-
pert Lisp programmer that provides an "ideal”
solution to a programming problem, a bug cat-
alog that contains errors made by novice pro-
grammers, and a tutoring component that pro-
vides both immediate feedback and guidance
to the student. Evaluations of the LISP Tutor
show that it can achieve results similar to
those obtained by human tutors. One of its
primary features is its enforcement of what its
authors regard as a "good" programming style.

TRAINING VERSUS TUTORING

The PD/ICAT system was developed with a
clear understanding that training is not the

same as teaching or tutoringd. The NASA
training environment differs in many ways
from an academic teaching environment.

These differences are important in the design
of an architecture for an intelligent training
system:

a. Assigned tasks are often mission-
critical, placing the responsibility for
lives and property in the hands of
those who have been trained.

b. Personnel already have significant
academic and practical experience to
bring to bear on their assigned task.

c. Trainees make use of a wide variety
of training techniques, ranging from
the study of comprehensive training
manuals to simulations to actual on-
the-job training under the supervi-
sion of more experienced personnel.

d. Many of the tasks offer considerable
freedom in the exact manner in which
they may be accomplished.

55

FDO trainees are well aware of the importance
of their job and the probable consequences of
failure. While students are often motivated by
the fear of receiving a low grade, FDO trainees
know that human lives, a billion dollar shuttle,
and a $100+ million satellite depend on their
skill in performing assigned tasks. This means
that trainees are highly motivated, but it also
imposes on the trainer the responsibility for
the accuracy of the training content (i.e., veri-
fication of the domain expertise encoded in the
system) and the ability of the trainer to cor-
rectly evaluate trainee actions. PD/ICAT is
intended, not to impart basic knowledge of
mathematics and physics, but to aid the
trainee in developing skills for which he al-
ready has the basic or "theoretical” knowledge.
In short, this training system is designed to
help a trainee put into practice that which he
already intellectually understands. The sys-
tem must take into account the type of train-
ing that both precedes and follows--building
on the knowledge gained from training manu-
als and rule books while preparing the trainee
for and complementing the on-the-job training
which will follow. Perhaps most critical of all,
trainees must be allowed to carry out an as-
signed task by any valid means. Such flexibil-
ity is essential so that trainees are able to re-
tain and even hone an independence of
thought and develop confidence in their ability
to respond to problems, even problems which
they have never encountered and which their
trainers never anticipated.

SYSTEM DESIGN

The PD/ICAT system is modular and consists
of five basic components:

1. A user interface that permits the
trainee to access the same informa-
tion available to him in the MCC and
serves as a means for the trainee to
assert actions and communicate with
the intelligent training system

2. A domain expert (DeplEx) which can
carry out the deployment process
using the same information that is
available to the trainee and which
also contains a list of "mal-rules"
(explicitly identified errors that
novice trainees commonly make).

3. A training session manager TSM)
which examines the assertions made

by the DeplEx (of both correct and in-
correct actions in a particular context)
and by the trainee. Evaluative asser-
tions are made following each trainee
action. In addition, guidance can be
provided to the trainee if appropriate
for his skill level.

4. A trainee model which contains a
history of the individual trainee's in-
teractions with the system together
with summary evaluative data.

5. A training scenario generator that de-
signs increasingly-complex training
exercises based on the current skill
level contained in the trainee's model
and on any weaknesses or deficien-
cies that the trainee has exhibited in
previous interactions.

Figure 1 contains a schematic diagram of the
|usen]
USER
INTERFACE
TRAINING
DEPLEX— BLACKBOARD 353‘5\&1‘
TRAINING
SCENARIO TRomEE
GENERATOR

mnoal

FIGURE 1 - PDACAT ARCHITECTURE

PD/ICAT system. Note that provision is made
for the user to interact with the system in two
distinct ways and that a supervisor may also
query the system for evaluative data on each
trainee. The blackboard serves as a common
"factbase” for all five system components.
With the exception of the trainee model, each
component makes assertions to the black-
board, and the rule-based components look to
the blackboard for facts against which to pat-
tern match the left-hand sides of their rules.

56

User Interface

The primary factor influencing the interface
design was fidelity to the task environment.
To avoid negative training, it was deemed es-
sential that the functionality and, to the extent
possible, the actual appearance of the training
environment duplicate that in which the task
is performed. Figure 2 contains a view of the

Foe matw agm
™ 1ear mguer 1

Anchoring an aphonaris Sohes Fasr orgumente: 1687 BEMUrST Yo Sar SYa
1. n spheneris number, (ndissting tve aphsseris to be ettt st
anchared.
2. Wn ftem otring, indicering shot obieet 1o be bo aedeled
1 Lhe mphemerts, fe the ‘Shateis’ er o ‘payieed” .
Morm o

Vatght Catntose Toble
Cant Trejeetery Bigital

FIGURE 2 - Typical Screen Seen by PD/ICAT Vser

trainee on a
The
upper right corner of the display contains
menus that allow the trainee to make requests
of other flight controllers, respond to requests
from other controllers, call up displays, obtain
information about the current or previous step
in the deploy process, request help from the
training system, and return to a previous step
in the process. This menu has as many as
three levels depending on the nature of the
action taken by the trainee. Some actions are
completely menu driven while others require
the input of one or more "arguments”. All ac-
tions taken by the trainee through these
menus and the arguments that they may re-
quire become assertions to the blackboard. All
requests directed to the trainee and all mes-
sages sent to the trainee in response to his re-
quests or actions appear in a window in the
upper left corner of the screen. These two
portions of the screen serve to functionally
represent the voice loop interactions that
characterize the current FDO task environ-
ment. Any displays requested by the trainee
appear in the lower portion of the screen,

typical
Symbolics 3600 series LISP machine.

display seen by a

ORIGINAL PAGE 15
OFE POOR QuaLTY

DT?’;’(’TT]\T}S?' ™ FTeey

overlapped,
Clicking the mouse on any exposed portion of a
background display will bring it to the fore-
ground. The displays replicate those seen by a
FDO on console in the MCC. During develop-
ment nominal data was supplied to these dis-
plays (from a dedicated ephemeris-generating
program or from "dummy" data sets) so that
negative training would not occur. Experi-
enced FDOs using PD/ICAT have expressed
satisfaction with the user interface.

if more than one is requested.

DeplEx

The Deploy Expert is a "traditional" expert
system in that it contains if-then rules which
access data describing the deploy environment
and is capable of executing the PAM deploy
process and arriving at the correct "answers".
In addition to "knowing" the right way to con-
duct the PAM deploy, DeplEx also contains

RIS Iﬁ
OOy e)
OF JGOK QUALITY,
BLACKBOARD
(A) PREVIOUS EVENTS EVENT1
TRIGGER SECTION EVENT2 __
OF DEPLEX CODE EVENT 3 STEP4
(B) TRAINEE ACTION EVENTt
MATCHES OPTION EVENT2
ASSERTED 8Y EVENT)
oelx ===
oplion 1 5
Trainee Action «—ts optien 2 Y
option 3 y,
option 4
(C) MATCHED OPTION EVENT
REASSERTED AS EVENT 2
LATEST EVENT EVENT3
EVENT 4o
v |
option 3
option 4
(D) UNUSED OPTIONS EVENT1
DELETED BEFORE EVENT2
NEXT STEP EVENT 3 STEPS
EVENT4

knowledge of the typical errors that are made
by novice FDOs. In this way, PD/ICAT can not
only detect an erroneous action made by a
trainee, but also, through these so-called "mal-
rules", it can diagnose the nature of the error
and provide an error message to the trainee
specifically designed to inform the trainee
about the exact error made and correct the
misconception or lack of knowledge which led
to the commission of that error. Another of
the interesting features of the PD/ICAT system
is its continual awareness of the environment
(the external constraints dictated by the
training exercise) and the context of the exer-
cise. Rather than having DeplEx generate a
complete and correct solution to the deploy-
ment problem, only those actions which are
germane to the current context are asserted.
In this way the expert "adapts” to alternate,
but correct, paths that the trainee might
choose to follow. Figure 3 shows schematically
how DeplEx operates. This strategy was
adopted because the human experts that
perform PAM deploys recognize that many
steps in the deploy process may be
accomplished by two or more equally valid
sequences of actions. To grant freedom of
choice to the FDO trainee and to encourage in-
dependence on his part, the experts felt that it
was essential to build this type of flexibility
into the PD/ICAT system.

57

FIGURE 3 - Depl€Ex Operetion, !llustrating its
Adaptability to Valid, User-Salected Alternotives

Training Session Manager

The training session manager is dedicated
principally to error-handling. Its rules com-
pare the assertions of DeplEx with those of the
trainee to detect errors. Subsequently, DeplEx
asserts facts that allow the TSM to write ap-
propriate error messages to the trainee
through the user interface. In addition, TSM is
sensitive to the skill level of the trainee as
represented by the trainee model. As a result,
the detail and "tone" of error messages is cho-
sen to match the current trainee. For example,
an error made by a first time user of the
training system may require a verbose expla-
nation so that the system can be certain the
trainee will have all of the knowledge and
concepts needed to proceed. On the other
hand, an experienced trainee may have mo-
mentarily forgotten a particular procedure or
may have "lost his place”. In this latter case a
terse error message would be adequate to al-
low the trainee to resume the exercise. The
TSM also encodes all trainee actions, both cor-
rect and incorrect, and passes them to the
trainee model.

Trainee Model

Successful intelligent tutors incorporate stu-
dent models to aid in error diagnosis and to
guide the student's progress through the tu-
tor's curriculum9. The trainee model in the
PD/ICAT system stores assertions made by the
TSM as a result of trainee actions. Thus, at its
most fundamental level, the trainee model
contains, for the current session, a complete
record of the correct and incorrect actions
taken by the trainee. At the conclusion of
each training session, the model updates a
training summary which contains information
about the trainee's progress such as a skill
level designator, number of sessions com-
pleted, number of errors made (by error type
and session), and the time taken to complete
sessions. After completing a session, the
trainee can obtain a report of that session
which contains a comprehensive list of correct
and incorrect actions together with an evalua-
tive commentary. A supervisor can access
each trainee's model to obtain this same report
or to obtain summary data, at a higher level,
on the trainee's progress. Finally, the training
scenario generator uses the trainee model to
produce new training exercises.

Training Scenario Generator

The training scenario generator relies upon a
database of task "problems" to structure
unique exercises for a trainee each time he
interacts with the system. The initial exercises
provided to a new trainee are based on vari-
ants of a purely nominal PAM deploy with no
time constraints, distractions or “problems”.
Once the trainee has demonstrated an accept-
able level of competence with the nominal de-
ploy, the generator draws upon its database to
insert selected problems into the training en-
vironment (e.g., a propellant leak which ren-
ders the thrusters used for the nominal sepa-
ration maneuver inoperable and requires the
FDO to utilize a more complicated process for
computing the maneuver). In addition, time
constraints are "tightened” as the trainee gains
more experience and distractions, in the form
of requests for information from other MCC
personnel, are presented at "inconvenient”
points during the task. The generator also ex-
amines the trainee model for particular types
of errors committed by the trainee in previous

58

(and the current) sessions. The trainee is then
given the opportunity to demonstrate that he
will not make that error again. Ultimately, the
trainee is presented with exercises which em-
body the most difficult problems together with
time constraints and distractions comparable
to those encountered during integrated simu-
lations or actual missions.

SYSTEM INTEGRATION

The PD/ICAT system is currently operational
on a Symbolics 3600 series Lisp machine. The
user interface and trainee model are written
in common Lisp while the rules of DeplEx,
TSM, and the training scenario generator are
written in ART 3.0. The system will ultimately
be delivered to MOD in a Unix workstation
environment. To accomplish this delivery, the
ART rules were written to facilitate translation
into CLIPS10 and the Lisp code will be
converted into C. It is uncertain, until the
exact delivery environment is specified, how
well the user interface can be ported.

CONCLUSIONS

The PD/ICAT system has, so far, proven to be
a potentially valuable addition to the training
tools available for training Flight Dynamics Of-
ficers in shuttle ground control. The authors
are convinced that the basic structure of
PD/ICAT can be extended to form a general
architecture for intelligent training systems
for training flight controllers and crew mem-
bers in the performance of complex, mission-
critical tasks. It may ultimately be effective in
training personnel for a wide variety of tasks
in governmental, academic, and industrial set-
tings.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the invalu-
able contributions of expertise from three
FDOs: Capt. Wes Jones, USAF; Major Doug Rask,
USAF, and Kerry Soileau. Various students as-
sisted with the knowledge engineering and
coding of portions of the user interface and
TSM: Tom Blinn, Joe Franz, Bebe Ly, Wayne
Parrott, and Chou Pham. Finally, the encour-
agement and guidance of Chirold Epp (Head,
ODS) and Bob Savely (Head, AIS) are gratefully
acknowledged. Financial support for this en-
deavor has been provided by the Mission

Planning and Analysis Division, NASA/Johnson
Space Center and (for RBL) by an American

Society for

Engineering Education/NASA

Summer Faculty Fellowship.

REFERENCES

1.

See, for example, Sleeman, D. and Brown,

J.S. (eds.), Intelligent Tutoring Systems
(London: Academic Press, 1982) and Yaz-

dani, M. '"Intelligent Tutoring Systems

Survey,” Artificial Intelligence Review 1,
43 (1986).

Carbonell, J.R. "AI in CAI: An Artificial
Intelligence Approach to CAIL" IEEE

Transactions _on__Man-Machine Systems
11(4), 190 (1970).

Hartley, J.R. and Sleeman, D.H., "Towards

Intelligent Teaching Systems," Interna-
ional Journal of Man-Machin ies 5,
215 (1973).

Yazdani, M. "Intelligent Tutoring Systems

Survey,” Artificial Intelligence Review 1,
43 (1986).

Brown, J.S., Burton, R.R., and de Kleer, J.,
"Pedagogical, Natural Language and
Knowledge Engineering Techniques in SO-
PHIE 1, II, and IIL" in Sleeman, D. and
Brown, J.S., (eds.), Intelligent Tutoring
Systems (London: Academic Press, 1982),
p. 227.

Johnson, W.L. and Soloway, E. "PROUST, "
Byte 10 (4), 179 (April, 1985).

Anderson, J.R., Boyle, C.F., and Reiser, B.J.,
"Intelligent Tutoring Systems,” Science
228, 456 (1985) and Anderson, J.R. and
Reiser, B.J.,, "The LISP Tutor,” Byte 10(4),
159 (April, 1985).

Harmon, P. "Intelligent Job Aids: How Al
Will Chang Training in the Next Five
Years,” in Kearsley, G., ed., Artificial Intel-
ligen nd Instruction: Applications an
Methods (Reading, MA: Addison Wesley
Publishing Co., 1987).

See, for example, a number of papers on
student models in Sleeman, D. and Brown,

59

10.

J.S., (eds.),
(London: Academic Press, 1982)

"CLIPS" is an acronym for "C-Language
Integrated Production System” and was
developed by the Artificial Intelligence
Section, Mail Code FM72, NASA/Johnson
Space Center, Houston, TX 77058. Its ad-
vantages as a delivery vehicle for expert
systems are discussed in Giarratano, J.,
Culbert, C., Riley, G., and Savely, R.T., "A
Solution of the Expert System Delivery
Problem,” submitted for publication in
IEEE Expert. For additional information on

CLIPS, write to the Al Section at
NASA/ISC.
ACRONYMS
AlS Artificial Intelligence Section
DeplEx Deploy Expert
FDO(s) Flight Dynamics Officer(s)
MCC Mission Control Center
MOD Mission Operations Directorate
(053] Orbit Design Section
oJT on-the-job training
PAM Payload-Assist Module
PD/ICAT Payload-Assist Module
Deploy/Intelligent Computer-Aided
Training
TSM Training Session Manager

N8§8-17215

TUTORING ELECTRONIC TROUBLESHOOTING IN A
SIMULATED MAINTENANCE WORK ENVIRONMENT

Sherrie P. Gott, PhD
Air Force Human Resources Laboratory
Manpower and Personnel Division
Brooks AFB TX 78235-5601

ABSTRACT

Expert performances on authentic technical
problems such as electronic fault isolation are
being captured in "real time" to provide the
basis for a new generation of Air Force training
systems. Experts (and novices) in dozens of
maintenance jobs in electronic and
electro-mechanical domains are being studied
with a hybrid knowledge engineering-cognitive
task analysis methodology. A primary goal is to
establish what humans really need to know and
how they use their knowledge when they problem
solve in complex workcenters that are saturated
with "smart" machines. The cornerstone of the
method is an expert problem solving dyad. One
expert poses a problem and simulates equipment
responses to a second expert who attempts to
jsolate the fault conceived by the first

expert. Engineering expert knowledge in this
fashion situates skill in the actual probliem
context and thus highlights the conditionalized
character of expert knowledge. This is in
contrast to representation techniques that yield
decontextualized (and perhaps ncnessential)
declarative knowledge through interrogation of a
single expert. A series of intelligent tutoring
systems--or intelligent maintenance
simulators--is being developed based on expert
and novice problem solving data of this type.
The training systems rest on the same
problem-based cornerstone. A graded series of
authentic troubleshooting problems provides the
curriculum, and adaptive instructional
treatments foster active learning in trainees
who engage in extensive fault isolation practice
and thus in conditionalizing what they know. A
proof of concept training study involving human
tutoring was conducted as a precursor to the
computer tutors to assess this integrated,
problem-based approach to task analysis and
instruction. Statistically significant
improvements in apprentice technicians'
troubleshooting efficiency were achieved after
approximately six hours of training.

INTRODUCTION

Both military and industrial work environments
have grown steadily in complexity in recent

61

decades as technologies, particularly
electronics related, have advanced at staggering
rates. Today's workers find themselves in
contexts where interacting with complex machines
is the rule. And yet, the nature of intelligent
performance in such machine interactions is not
well understood. In addition, beliefs that
cognitive demands on humans have diminished with
the proliferation of so-called smart machines
have diverted attention away from the human
capabilities that are important for a high-tech
workforce. Yet, it now seems clear that for the
foreseeable future, machine diagnostic
capabilities have definite 1imits. These limits
in turn place a premium on the human expertise
that is needed to pick up where the machines
leave off. For example, the hit rate for some
built-in diagnostics for the BIB is only 65
percent. Even with today's widely used
maintenance aiding machines (many having expert
system features), the ratio of maintenance hours
to flying hours for the F~15 aircraft is 50:1
(Atkinson & Hiatt, 1985). In more general terms
it has been estimated that as much as 90 percent
of the life-cycle cost of a defense hardware
system is the cost of maintaining it.

A large-scale research program is underway at
the Air Force Human Resources lLaboratory in
direct response to this problem. The goals are
to develop methods for representing human
expertise on complex technical tasks so that
training systems capable of meeting the demands
of high-tech workcenters can be realized.

THE ENGINEERING OF CONDITIONALIZED KNOWLEDGE

The knowledge engineering approach in the Air
Force Basic Job Skills (BJS) Research Program
involves "real-time" problem solving, multiple
stages and types of knowledge engineering
inquiry, and a number of formats for knowledge
representation. A framework has been adapted
from knowledge engineering work in medical
diagnosis to represent the mental events of
troubleshooting as conditionatized knowledge
(Clancey, 1985). In this framework, actions of
the problem solver are recorded as discrete
operations or procedures, e.g., tracing

FROCEDTG PASE BLANK NOT FILMED |

schematics or measuring voltage. In addition,
reasons or precursors for the actions are
expressed as the goals or intents of the problem
solver, and the interpretations of outcomes
resulting from the actions are recorded as
well. Finally, block diagram-like sketches of
the equipment parts that are affected by the
outcomes and actions are generated by the
technician to illustrate the series of steps.
Sequences of mental events such as these are
called PARI structures (Precursor [to Action] -
Action - Result - Interpretation). An example
of PARI data for a single action node is shown
in Table I.

Notice in this PARI example that the Action
element is a familiar troubleshooting procedure,
namely, taking a voltage measurement with a
multimeter. The representational formalism of
the PARI framework does more than reveal that a
technician needs to know how to take a voltage
measurement, however. What is also captured are
the conditions that surround such a measurement
operation, including the reasons behind the
action (..."to see if the signal is good up to
test package cable") and the interpretation of
an expected voltage level (..."tells me...that
part of stimulus path [upstream] is good"). In
effect, the vital strategic processes of
troubleshooting are made explicit with this
representation scheme. The plan that produced
the measurement operation becomes known. The
technician's plan is to constrain the problem
space by eliminating either the stimulus or
measurement (return) portion of the signal

path. It is precisely this kind of strategic
skill that too often goes “"untaught" in
electronics training, in much the same way that
strategic knowledge is frequently ignored in the
teaching of mathematics (Greeno, 1978). When
problem solving performances are captured in
real time, it becomes possible to engineer
strategic knowledge for input to instructional
systems along with the more standard declarative
knowledge. In this manner a skill such as
taking a voltage reading is represented in terms
of its ties to the conditions of use, just as it
occurs in real world expert performances.

Representing skill components in this form
offers considerable power to instruction, given
that conditionalized knowledge is a recognized
hallmark of expertise. Conversely, novices
often display fragmented, unprincipled behavior
that suggests weakness in the proceduralizing
(or conditionalizing) of their skill
components. In the present example, novices may
know how to use a muitimeter to take a voltage
reading but often do not produce that action
under the appropriate conditions. If produced,
they often have difficulty interpreting the
results of the action.

KNOWLEDGE ENGINEERING RESULTS

Approximately 15 technical experts and 200
less-than-expert technicians in four related AF
electronics specialties have participated to
date in knowledge engineering studies similar to
those described above as part of the Basic Job

62

Skills Research Program. On the basis of these
studies, a meaningful superstructure for
organizing troubleshooting performance data has
been developed. It consists of three
components, one of which is strategic knowledge
as previewed above. The three interacting
components are (1) system knowledge or the
equipment device models experts use in problem
solving (e.g., system knowledge regarding the
stimulus or measurement functionalities of the
equipment); (2) troubleshooting procedures or
operations performed on the system; and (3)
strategic knowledge, which includes {a)
strategic decision factors that involve fault
probabilities and efficiency estimates and (b) a
top-level plan or strategy that is responsible
for the orchestration of skill components in
task execution. The orchestration occurs as the
Strategy component, which sits on top of the
Procedures and System Knowledge components,
deploys pieces of knowledge and procedural
subroutines as needed and as driven by the
decision factors {(Figure 1).

The System Knowledge component of the
architecture deserves special attention for
several reasons. First, it provides the
dominant organizing principle for this cognitive
skills architecture. It is the foundation to
which the companion Procedures component in
Figure 1 is attached. According to this view, a
measurement or swapping operation is attached to
a device model representat1on, since the purpose
of the operat1on is viewed as adjusting the
technician's present model of the device with
new know]edge of faulty components. This

“attachment” is part of the conditionalized
character of expert knowledge. System Knowledge
also feeds the strategic decision factors that
underlie the Strategy component, since these
factors involve system fault probabilities and
efficiency estimates associated with operations
on the system, e.g., it is judged time efficient
by experts to run self diagnostics on some
pieces of equipment but not others. Finally,
System Knowledge influences the goal structure
of the Strategy component in the sense that
certain areas of the equipment are targeted
before others {again due to fault probabilities
and efficiency considerations).

The second reason why System Knowledge merits
special attention here is because the curriculum
content for the intelligent tutor described in
the next section is directly influenced by the
different system perspectives of expert
troubleshooters. In the course of the knowledge
engineering studies conducted to date in the BJS
project, it has become clear that experts’
decision making during troubleshooting is
partially driven by system schemas. The schemas
represent a set of system-related questions that
experts entertain at various stages in the fault
isolation process {Collins, 1987). They include
the following:

-Is the system fail a glitch, an intermittent
fail, or a hard fail?

-In which large functional area of the
equipment--i.e., Line Replaceable Unit (LRU),

Test Package, or Test Station--is the fault
Tocated?

-Is the problem a power-related fail?

-Is the problem a stimulus or measurement
problem?

-Is the problem a signal or data flow problem?
-Do the symptoms indicate the fault is in a
device or in the connections between devices?

These questions can be viewed as the major
parses the expert makes of the fault isolation
space in which he/she works. Three of these
parses have provided the framework for the
troubleshooting problems that comprise the
instructional content for the avionics
intelligent tutor to be described next.

A SIMULATED MAINTENANCE WORK ENVIRONMENT

An intelligent maintenance practice environment
for F15 integrated avionics technicians has been
developed by researchers at the University of
Pittsburgh's Learning R&D Center in
collaboration with AF technical experts
(Lesgold, 1987). The tutor is based on results
from cognitive analyses of expert and novice AF
technicians using the knowledge engineering
methods referenced above. The analyses have
provided three general types of input to the
intelligent tutoring system: detailed
characterizations of expert performance which
are the targets for instruction (expressed in
terms of the cognitive skills architecture of
Figure 1); a framework for the design of the
troubleshooting curriculum based on three parses
experts make of the problem space in this
domain; and guidelines for the instructional
treatment based on expert-novice differences as
well as on present impediments to apprenticeship
learning in the workplace.

Expert Parses

Two central system schemas that experts activate
as they navigate and parse problem spaces in
this domain have provided the design framework
for the maintenance tutor's problem set. These
schemas represent two system perspectives
experts' invoke, depending upon the conditions
of the problem. The first concerns the major
functionalities of the equipment, namely,
stimulus and measurement functions. Recall that
in the example reported in Table I the expert
both explains his action and interprets the
system's response to the action in terms of the
stimulus portion of the equipment. More
specifically, the procedure (action) used allows
him/her to achieve the goal of verifying that a
major functional area of the equipment is
operating properly.

The stimulus-measurement functionalities of this
equipment are illustrated in Figure 2. This is
an abstracted characterization of the system's
signal path. As shown, the signal originates in
the stimulus drawer of an avionics test station,
travels through the station's switching drawer
(S/C) which performs signal switching functions,
and through an interface test package to an
aircraft 1ine replaceable unit (LRU} which is

63

being tested for a malfunction. It returns
through the interface package to a measurement
source in the test station.

Problems in the tutor curriculum represent
faults at varying levels of difficulty in the
stimulus and measurement routing of the
equipment. Trainees will have modeled for them
how an expert uses this perspective to isolate
various faults. They will then have extensive
opportunities to solve problems--with the
assistance of a hint-giving coach--so that
system functionality knowledge is tied to
problem solving conditions. This kind of
learning environment is in contrast to
instruction where system knowledge would be
taught as declarative facts detached from the
conditions of use, or where measurement
procedures would be taught in isolation from the
system and the fault isolation context.

Results of our knowledge engineering work plus
input from the dominant theory of skill
acquisition in psychology today (Anderson, 1982)
have shaped this instructional approach. First,
our results have indicated that a principal form
of the conditionalized knowledge of experts in
this domain is the coupling of conceptual system
knowledge (e.g., the stimulus-measurement
functionality) with procedural and strategic
components. This results in experts'
investigating their equipment with specific
intents and particularized procedures. In other
words their system knowledge is not detached and
inert, but rather is tightly interwoven with
problem solving actions that are produced by
strategic plans in response to certain
malfunction conditions. Presently, in the Air
Force this form of conditionalized knowledge
results only after many years of experience, as
would be predicted by Anderson's theory. A
principal goal of the BJS maintenance tutor is
to speed up that conditionalizing process.

The second system perspective or schema used to
shape the tutor's problem set is signal flow vs
data flow. Experts also view the equipment (and
thus represent faults) in terms of these two
interrelated system properties. In short, this
schema involves knowledge that both an
electronic signal and instructions (control
data) to the equipment for handling the signal
move through the system. Faults can occur with
respect to either property. Accordingly, signal
flow and control data flow problems are
incorporated in the tutor at varying levels of
difficulty.

Finally, a third schema, namely, the macro level
functional representation of the equipment (LRU
vs Test Package vs Test Station) has guided
problem development. This schema is integrally
tied to experts' strategic planning knowledge in
the sense that they typically plan their moves
through the problem space so that they system-
atically rule out the LRU before moving their
focus to either the Test Package or Test Sta-
tion. Trainees will make decisions within the
tutor environment to pursue either an LRU Plan,
a Test Package Plan, or a Test Station Plan.

In summary, the development of the Air Force
avionics tutor illustrates that knowledge
engineering can usefully feed instructional
design as well as provide the more standard type
of input, i.e., the expert knowledge base.
Further, dynamic, problem-based knowledge
engineering allows for the representation of
conditionalized knowledge so that the most
critical stage of skill acquisition can be
targeted by instruction. That is the stage at
which knowledge becomes tied to conditions of
use. The avionics maintenance tutoring system
based on this approach will be discussed in more
detail in the next section.

An Al Instructional Application.

The BJS tutoring system that has resulted from
the expert dyad approach to knowledge
engineering is an interesting Al application in
the sense that it embodies minimally deep
intelligence. It avoids complete qualitative
physics of the work environment as well as a
complete computer representation of expertise
(Lesgold, 1987). In short, there is neither a
fully articulate expert nor a runnable equipment
simulation. Later tutors in the BJS series will
have these features; however, this initial
system is of special interest in its own right.
Its development is much less resource intensive
than that of deep intelligence tutors, and it
has received an enthusiastic reception from
technical experts at the three operational sites
where it will soon be tested. If the evaluation
results reveal troubleshooting performance gains
in accordance with the predictions of field
personnel, this form of intelligent tutoring
system represents a quite feasible prototype
that can immediately generalize to other
troubleshooting domains.

A rigorous evaluation study will accompany the
intervention in order to formally assess its
effectiveness. A controlled experiment will
permit the determination of how much on-the-job
experience is replaced by the 30 to 50 hours of
tutor instruction. In addition, performance of
individual technicians and the shop-level
productivity of the three F15 workcenters will
be tracked longitudinally to ascertain the
long-term impact of the instruction.

As a precursor to this series of BJS intelligent
tutoring systems, a training study involving a
human tutor (versus a computer coach) was
conducted in a related F15 integrated avionics
domain. One goal was to test the concept of
basing instruction on representations of
conditionalized expert knowledge. The treatment
involved the posing of authentic troubleshooting
problems similar to those generated in a BJS
knowledge engineering study as described above.
The expert-like skills targeted for enhancement
were particular instantiations of the cognitive
skills architecture (Figure 1). The system
knowledge of interest was the abstracted signal
path shown in Figure 2, plus several layers of
elaborated system knowledge. The procedures of
interest were three methods for investigating
the equipment that ranged from rudimentary to

64

advanced:

(1) swapping equipment components

(2) using self-diagnostics to test system
integrity

(3) measuring device and circuit functionality.

Increasingly complex system and strategic
knowledge are associated with increasingly
sophisticated methods.

During three to five hours of individual
instruction over a period of three days, seven
technicians were tutored. They were presented a
troubleshooting scenario and then probed
regarding what they would do to isolate the
fault (Actions), why they would take the
particular action (Precursors), and what the
outcome (Result) of the action meant to them
{Interpretation). In effect, technicians were
instructed to generate PARI records (see Table
1) including the associated device model
sketches. The human tutor gave feedback to
their stated Precursors, Actions, and
Interpretations in the form of hints intended to
move them toward more expert-like performances.

To evaluate their learning, they were given both
an end-of-training problem-based test as well as
a delayed posttest after the weekend. The tests
were authentic troubleshooting scenarios
belonging to the same class and difficulty of
problems on which they had been tutored. Their
progress was scored both in terms of the
sufficiency of their operations--that is,
whether they sufficiently investigated all
suspect pieces of the equipment--and the
efficiency of their moves--that is, whether they
e??1c1entiy conserved time and equipment
resources.

Results showed statistically significant
improvements in both areas, with particularly
dramatic gains in efficiency. Mean scores are
plotted in Figure 3. The group's Sufficiency in
examining all suspect parts of the equipment
improved from a pretest mean value of 84

{range = 60 to 95) to a posttest mean of 100.
The dalayed posttest mean was also 100,
indicating the improvement was retained over the
weekend. The group's Efficiency in fault
isolation improved over twofold. The mean
pretest value was 37 (range = 24 to 52); the
initial posttest mean was 92 (range = 81 to
100); and the delayed posttest mean was 93
(range = 81 to 97).

Pedagogically, this human tutor training study
was based on the same instructional principles
that underpin the computer-based avionics
tutor. Technicians were afforded extensive
practice in fault-isolation; they were required
to articulate and focus on their reasons and
their interpretations of various troubleshooting
moves; they were aided by a human tutor who,
principally through Socratic dialogue,
challenged them to reflect on what they did in
tems of expert standards of thoroughness and
efficiency. The technicians later attributed
the gains they made to the opportunities they

had to practice fault isolation procedures
intensively and to solve problems
independently. They reported that recording and
reflecting on their actions and reasons was
helpful and that they profitted from the hints
and consistent feedback. This successful study
is viewed as empirical support for the
effectiveness of skill acquisition treatments
that focus on the conditionalizing of knowledge
in intelligent learning environments. External
support in the form of the PARI records and the
human tutor's feedback appeared to play a
central role in learning. Finally, the
instruction was realizable because of the
knowledge engineering input that revealed the
processes by which experts conditionalize what
they know.

REFERENCES

1. Anderson, J.R., Acquisition of cognitive
skill, PSYCHOLOGICAL REVIEW, Vol 89, 1982, pp
369-406.

2. Atkinson, R. & Hiatt, F., Nation's high-tech
weaponry requires high-priced repairs, THE
WASHINGTON POST, Aug 18, 1985, pp 1, 8.

3. Clancey, William, Acquiring, representing,
and evaluating a competence model of diagnostic
strategy, REPORT NO. STAN-85-1067, Department of
Computer Science, Stanford University, Stanford,
CA, August, 1985.

4. Collins, Allan, Users of task analysis, Air
Force Basic Job Skills Progress Review, San
Antonio, Tx, June 1987.

5. Greeno, James G., A study of problem
solving, ADVANCES IN INSTRUCTIONAL PSYCHOLOGY,
Vol 1, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1978, pp 13-75.

6. Lesgold, Alan, The manual avionics tutor,
Air Force Basic Job Skills Progress Review, San
Antonio, Tx, June 1987.

65

Table 1: PARI DATA
Precursor: Want to see if the stimulus signal is good up to test package cable
Action: Measure signal at J14-28 with multimeter

Result: 28 volts

Interpretation: This is expected reading; this tells me that the stimulus
is getting from the test station through the cable, so that
part of the stimulus path is good

TEST

ITA
STATION

J14-28

66

suoljesadoQ abpajmou)|
/$94npadsoid WaIsAS

siojoe4 uoispaq sibajens

1 1 1

abpojmou)y aibajens

3iN123lYdily SEIS 9ANubBo)

‘| 94nbi4

67

NOILV¥1lS 1S3l

FOVIOVJ
Jame.lq
JUdWIINSEIW

lameuq
sninuns

(Yyied reubis)
uonesnbiyuos j1uswdinbg soIUOIAY

-2 34nbr4

68

10" » d Aouadyj3 Bunooysaqnos| e

}1sa1 6unooysaignoua]

1S0d-1S0d 1S0d 3ud
0 0
02 02
ov oY
09 09
08 08
001 001

Apnls buuiea]
1dasuo) jo Jooud
srd

*¢ 3unbi4

awrPWZ- QOCcWOH

69

N88-17216

INTELLIGENT TUTORING SYSTEMS AS TOOLS FOR
INVESTIGATING INDIVIDUAL DIFFERENCES IN LEARNING

Valerie J. Shute
AFHRL/MOE

Brooks AFB, TX

INTRODUCTION

The purpose of the Learning Abilities Measurement We have used some simple learning tasks to

Program (LAMP) is to conduct basic research on determine the elementary cognitive processes

the nature of human learning and performance. involved in learning abilities such as: Infor-

The ultimate goal of this research is to build mation processing speed, prior knowledge, and

an improved model-based selection and classifica- working memory capacity (size and activation

tion system for the United States Air Force. level). To test the extent of differential

During the first few years of the program, and learning abilities based on these rudimentary

continuing through to the present, researchers processes, we need to examine learning in pro-

are developing innovative approaches to ability gress in complex environments, like intelligent

testing (Kyllonen & Christal, in press). In tutoring systems (ITS's), which reflect 'real

' ces .
conjunction with this framework, new kinds of world' performance rather than artificial labor-

computerized ability tests have been developed atory tasks (like paired associate or rule learn-

(Fairbank, Tirre & Anderson, 1987; Tirre & ing) which often do not generalize to the real

Rancourt, 1986; Woltz, 1986; Woltz, 1987). world. There are basically two categories of

LAMP examines individual differences in learning related activities in this research program.

abilities, seeking answers to the following First, we are concerned with individual differ-

. ' . :
questions: ences in learners' knowledge and skills. 1In this

1. Why do some people learn more and better regard, our aim is to identify more efficient

than others?
and precise methods of individual assessment.

2. Are there basic cognitive processes
applicable across tasks and domains that
are predictive of successful performance,
or are the behaviors in question more
involved (e.g., complex problem solving
behaviors)?

Second, we are interested in validating models
of ability organization by (a) estimating indi-
vidual skill and knowledge levels, (b) estimating

3. Which of these processes or learning individual proficiency levels on various learn-

abilities are domain specific and which

generalize across subject areas? ing tasks, and (c) relating the two sets of

IA

FRECEDING PAGE BLANK NOT FILM:D I PAGE BLANK NOT FILMED

estimates using exploratory and confirmatory
mathematical modeling techniques such as regres-

sion analysis and factor analysis.

We have contracted to have three complex, long-
term learning tasks (i.e., ITS's) developed. The
three tutors teach electronics trouble-shooting,
flight engineering, and Pascal programming.
These ITS's, each requiring about seven days for
completion of the curricula, are, for the most
part, based on instruction and test modules from
operational Air Force training courses. We are
using another ITS for basic research that has a
more discovery-oriented learning approach invol-
ving principles of microeconomics. In addition
to encompassing economic concepts, 'Smithtown"
(Shute & Glaser, in press) assists the learner in
becoming more methodical and ‘'scientific' in
their pursuit of knowledge obtainable from the
system. Learning parameters estimated from per-
formance in all of the ITS courses serve as
intermediate criteria against which measures of
knowledge and skill acquisition will be evaluated.
The success of LAMP will ultimately not depend

on whether we can predict who is more adept at
acquiring simple facts and rules from the short-
term tasks, but on whether we can predict who
will acquire more permanent and complex sets of
skills characteristic of effective operational
job performance. Thus, our main concern is with

validating models of cognitive skills against

performance in complex learning environments.

INTELLIGENT TUTORING SYSTEMS AS RESEARCH TOOLS

We are using intelligent tutoring systems as

72

experimental vehicles to determine the set of
predictor variables effective in predicting
understanding and learning in complex environ-
ments. In any intelligent tutoring system, the
learner interacts with a computer program to
acquire new information and exercise newly ac-
quired skills. The program presents problems to
the student in an adaptive fashion by taking into
account both the structure of the concepts from

a subject domain (i.e., the curriculum) and the
individual learner's current knowledge and under-
standing of that subject domain (i.e., the stu-
dent model). Such programs can provide a rich
trace of the individual's learning performance,

states of knowledge, and rate of progress

through the curriculum.

With each ITS, analyzed separately, we begin our
research by delineating a large set of knowledge
and performance indicators for a given tutor,

and then relate these behaviors back to the in-
dividual cognitive processes as well as to objec-
tive measures of learning (see Shute, Glaser &
Raghavan, 1987). To illustrate, the Pascal pro-
gramming tutor has general purpose data analysis
tools which let us specify exactly which per-
formance or knowledge indicators we want output
from the extensive student history list. Any
action or sequence of actions can be specified
as an 'event'. For example, we can set up any
event where A, B, C, and D are particular
actions:

El: (The student does A and B then (C or D)), or
E2: (The student does A or B and (not C)).

The system computes how many times this sequence

occurred, the errors in performance on this
event, the number of intervening events between
subsequent occurrences of this event, and so on.
We can specify very simple actions as events
(e.g., The student does A) to more complex series
of actions to see how the student progresses

over time.

Thus, the ITS research can serve as an ideal
source of intermediate learning criteria against
which conventional and experimental aptitude
tests can be validated. For instance, we can
determine whether processing speed or working
memory capacity is more important in ascertain-
ining who will be successful in learning Pascal
programming, or perhaps it is determined more
from higher level "planning" types of behaviors

(Anderson, 1987).

Intelligent tutoring systems provide us with
controlled, rich environments to investigate
individual differences in the acquisition of
knowledge and skills. In addition, they provide
us with comprehensive traces of all student
actions involved in the learning of a given
subject matter. The tutors consist of complex,
real world type environments, allowing us to
abstract so much more information about learning

than is possible from static paper and pencii

tests.

One important consideration in using ITS's is
that some computer learning environments are

clearly not suitable for all types of subject

73

populations (e.g., discovery worlds). To illus-

trate, two groups of subjects have been run on
Smithtown, the intelligent discovery world envi-
ronment mentioned earlier that embraces the laws
of supply and demand in a hypothetical marketplace
(Shute, et al., 1987). Variables such as the
population or weather can be manipulated, the
results noted, and principles and laws induced
from the findings. University students were, for
the most part, very positive about it, and said
things like, "What a fun game... I learned a lot
about economics". On the other hand, basic Air
Force recruits (N= 530) were mostly bewildered
by the environments, typically complaining that,
"I've been lost the whole time!"™ and constantly
asking, "What should I be doing?" This is not
surprising given the different structures and em-
phases of the two settings (i.e., academic vs.
military contexts). Given this finding, it
would be a relatively easy adjustment to make
the environment more structured for those in-

dividuals requiring more of a framework for

learning.

FUTURE DIRECTIONS

The tutors will allow us to predict various
properties of the acquisition process for dif-
ferent Air Force related knowledge and skills
from measures developed within the LAMP project.
In addition, the measurements of the course of
acquisition and its variability across indivi-
duals can be used to shape and confirm extensions
to current theories of knowledge and skill

acquisition as well as to document the critical

individual differences that arise during this

process.

Three types of learning progress indices will be
used to measure different aspects of the course
of learning. These include measurements of an
individual's rate, quality and durability of
learning. Specifically, the three measures are:
performance criteria (e.g., the number of times
tutor advice was required), categories of acqui-
sition trajectories (e.g., change in performance
speed as a function of practice) and process
measures (e.g., plans that a subject develops

for solving a problem).

Currently, we are contracting to have intelli-
gent tutoring systems developed on PC AT-compa-
tible machines (mini-tutors). These systems
will consist of job skills extracted from the
larger tutors such as: declarative knowledge
acquisition of electrical circuits, procedural
knowledge of graph interpretation, and so on.
These mini-tutors, lasting only 1-3.5 hours
instead of 7 days, will allow us to refine
hypotheses and measures with the mini-tutors
criteria before actually testing them out on

a large scale. We will be able to more pre-
cisely analyze the learning of specific pro-
ductions underlying complex skills. These
systems will also be considerably more cost
effective than the larger tutors in terms of

subject hours and hardware costs.

SUMMARY

Assessing individual differences in cognitive

74

processes using experimental learning tasks is
just one aspect of the LAMP effort. Another, and
more exciting feature, is the mechanism we are
concurrently using to extend our findings from
the simpler, often contrived environments to

more complex, real world types of environments
via intelligent tutoring systems. Thus, the

LAMP program and its use of ITS's as experimental
testbeds represents an innovative twist on an

old stream of research: investigating individual
differences in learning as it relates to success-—
ful on-the-job learning and performance. Our
ITS's, as intermediate criteria, will enable us
to assess the same kind of learning as occurs in
real world tasks, but in controlled environments
with rich traces of the active, ongoing learning
processes. This can be contrasted to the paper
and pencil tests historically (as well as cur-
rently) used by the Air Force to assess learning
and abilities. These tests only provide post
hoc, static measures or depictions of learning,
with many unanswered questions regarding the
route to that end. The ITS's let us look at a
range of individual differences in learning from
simple cognitive processes such as information
processing speed (and its various components,
such as encoding, comparing, choosing, retrie-
ving, attention shifting and memory searching)

to more complex problem solving processes such
as means ends analysis and hypothesis generation

and testing.

References

Anderson, J.R., "Using intelligent tutoring
systems to analyze data", Paper presented at
the COGNITIVE SCIENCE SOCIETY CONFERENCE,
Seattle WA, July 1987.

Fairbank, B.A. Jr., Tirre, W.C. and Anderson,
N.S., "Measures of thirty cognitive tasks:
Analysis of reliabilities, intercorrelationms,
and correlations with aptitude battery
scores", Paper presented at the NATO ADVANCED
STUDY INSTITUTE IN COGNITION AND MOTIVATION,
Athens, Greece, December 1984.

Kyllonen, P.C. & Christal, R.E., "Cognitive
modeling of learning abilities: A status
report of LAMP", In R. Dillon & J.W.
Pellegrino, ADVANCES IN TESTING AND TRAINING.
New York: Academic Press, in press.

Shute, V.J. & Glaser, R., "An intelligent
tutoring system for exploring principles of
economics", In R.E. Snow & D. Wiley (Eds.),
STRAIGHT THINKING, San Francisco: Jossey
Bass, in press.

Shute, V.J., Glaser, R., Raghavan, K., "Discovery
and inference in an exploratory laboratory",
In P.L. Ackerman, R.J. Sternberg, & R.

Glaser (Eds.), LEARNING AND INDIVIDUAL

DIFFERENCES, San Francisco: Freeman, 1987.
Tirre, W.C. & Rancourt,C.R., "Individual
differences in learning by accretion: It

all begins with comprehension", Paper pre-
sented in R.E. Snow (Chair), Determinants
of individual differences in learning,
AMERICAN EDUCATIONAL RESEARCH ASSOCIATION,

San Francisco, CA, April 1986.

75

Woltz, D.J., "Activation and decay of word mean-
ings: An individual differences investiga-
tion of working memory", Unpublished manu-
script, AFHRL, Brooks AFB, TX, 1987.
Woltz, D.J., "The role of working memory in as-
sociative learning', Paper presented in R.E.
Snow (Chair), Determinants of individual
differences in learning, AMERICAN EDUCATIONAL
RESEARCH ASSOCIATION, San Francisco, CA,

April 1986.

N88-17217

AN INTELLIGENT TUTOR FOR THE SPACE DOMAIN

Dr. Kathleen Swigger*
Harry Loveland

North Texas State University
Computer Sciences Department
Box 13886
Denton, Texas 76203

ABSTRACT

This paper describes an intelligent tutor-
ing system for the space domain. The system
was developed on a Xerox 1108 using LOOPS
and provides an environment for discovering
principles of ground tracks as a direct function
of the orbital elements. This paper also looks
at some of the more practical design and
implementation issues associated with the
development of intelligent tutoring systems.
It attempts to offer some solutions to the
problems and some suggestions for future
research.

INTRODUCTION

The Intelligent Tutor for Ground Tracks (nick-
named OM) is designed to teach students how to
“deduce” a satellite’s orbital elements by looking at a
graphic display of a satellite’s ground track. In order to
help the student understand these relationships, the
system was given a special interface that allows student
to freely investigate different options and “discover”
relationships between various parameters. If, however,
the student does not “discover” these principles and
concepts, then OM intervenes and directs the student
toward specific goals.

One of the basic missions for space operations per-
sonnel is the continuous monitoring of the exoatmos-
pheric arena through ground and space surveillance.
For example, NORAD, through its Space Defense
Center, maintains a worldwide network that senses,
tracks, and analyzes the characteristics of orbiting sys-
tems. In order to monitor and plan for satellite mis-
sions, space operations crews must be able to read and
understand ground tracks. Ground tracks are two-
dimensional displays that show the portion of the earth
that a satellite covers in one orbit. The ground track is
a direct function of the orbital elements, so proper
understanding of these functions and their effect on the
shape of the ground track is critical for anyone
interested in satellite operations.

One way to teach students how to deduce orbital
elements from a satellite’s ground track is to present
the various formulas that are used to compute the orbi-
tal elements and then show students how to apply
these formulas to situation-specific tracks [Bates et al.,
1971; Astronautics, 1985] In contrast to this approach,

*This research was supported, in part, with a grant from the Office of Scientific
Research which was conducted at the Air Force Human Resources Laboratory
(AFHRL), San Antonio, Texas.

77

we discovered that experts store ground tracks as
graphical representations, indexed by feature and
shape. Based on previous experience, experts learn
how to detect any features such as size, number of
loops, direction, etc., and then use this information to
“estimate” the orbital elements. In order to duplicate

this process, we decided to build a qualitative model of
how the expert predicts orbital elements, given specific
shave descriptors, and then use this model as a basis
for teaching students the effects of different orbital
parameters on the shape of the ground track.

STUDENT/COMPUTER INTERACTION

As previously mentioned, the microworld for the
Ground Track problem offers a number of online tools
that permit students to discover relationships between
orbital parameters and ground tracks. This environ-
ment consists of an elaborate ground track display (Fig-
ure 1) and a number of interactive tools designed to
encourage systematic behaviors for investigating ground
track related problems. The student initiates a
discovery activity by changing one or more orbital
parameters or changing the injection parameters. This
task is accomplished by positioning the cursor over the
individual parameters and pressing the left mouse but-
ton to increase the value or the middle button to
decrease the value. The injection point is changed by
positioning the cursor over a particular point on the
map and pressing the left mouse button, which
automatically sets both the longitude and latitude. A
student can observe the results of these changes by
selecting “Generate Ground Trace” from the main
menu. After investigating the effects of changing dif-
ferent parameter values for different ground tracks, the
student can advance to the Prediction window where
he can make a hypothesis regarding the particular
shape of a ground track.

In the Prediction portion of the program, the sys-
tem displays a list of words that describe various
features about ground tracks such as shape, size, and
symmetry SFigure 2). From this list of descriptors, the
student selects the words that “best” describe the
current ground track under discussion. The student
then tests his prediction by selecting this option from
the menu and comparing the inputs to the Expert’s
conclusions. The student can then interrogate the
Expert System by placing the cursor over any of the
descriptors and pressing the left mouse button. A
“why” pop-up menu appears on the screen which
enables a student to receive an explanation of the
Expert’s reason for the correct descriptor. A student
may aiso interrogate his own selections by placing the

FRECELING PAGE BLANK NOT FILM3ID

cursor over his “input” selection and pressing the right
button. In this instance, a “why not” pop-up menu
appears and displays the reasons why a particular
descriptor was an inappropriate selection. The student
can continue in this manner until he understands the
various relationships between the shape of a ground
track and the different orbital parameters.

After making several successful predictions, the
student enters an Orbit Prediction environment which
is designed to check the student’s predictive powers by
asking him to perform a task in the reverse order of the
one described above. The student is shown a specific
type of ground track and asked to enter actual orbital
descriptors of the ground track. If the student is suc-
cessful, then he can continue to explore different types
of ground tracks. If the student is unsuccessful, then
he receives information about why his answers are
incorrect.

TOOL DESCRIPTION

There are three major online tools that can be
used by the student to gather information and to
understand concepts and principles about ground
tracks. These tools are a) a History tool that allows the
students to overlay previously generated ground tracks
and note relationships between parameters b) an Orbit
window that displays a two-dimensional representation
of the orbit (Figure 1); and ¢) a Definition/Example
tool which displays factual information about different
orbital parameters (Figure 1) and orbital descriptors.

The History tool is specifically designed to help
students recognize relevant patterns between and
among previously generated ground tracks. As the stu-
dent generates various ground tracks, the system col-
lects and stores each transaction. The student can
retrieve any of this data by selecting the History option
from the main menu. A list of the past twenty ground
tracks appears on the screen from which the student
can select one or more related ground tracks. The sys-
tem then overlays the selected ground tracks onto a
single map. Again, the student observes the results of
this exercise.

For any given set of orbital parameters, the stu-
dent can obtain a two-dimensional display which shows
the position of the satellite in relationship to the earth.
The student selects the option labelled Orbit window
and gains immediate access to this particular display.
The Orbit window is especially useful for demonstrating
the relationship between the ground track and the
actual orbit and for illustrating the effect of perigee on
elliptical orbits.

The Definition/Example tool provides the student
with the factual knowledge about the domain. A stu-
dent can obtain definitions and examples for orbital
parameters and the shape descriptors by simply placing
the cursor over the keyword in question and pressing
the right mouse button. A pop-up menu appears on
the screen from which the student can select defini-
tions, examples or explanations. The explanations for
the orbital parameters are generated according to the
context that they appear.

Thus by using the available tools, a student can
obtain facts about the orbital world (through the
Definition/Example tool), see relationships between dif-
ferent ground tracks (through the History window),
and understand certain principles about satellite opera-
tions (through the Orbit window). A student has the
option of using any of these tools at any time during

78

the computer/student interaction. If, however, the stu-
dent is not making sufficient progress, the system inter-
rupts and directs the student to use a specific tool to
achieve an objective.

DESIGN OF THE SYSTEM

Overview

Although the system is composed of five logical
units (an Expert system, a Curriculum, a State
Module, a Student Model, and a Coach}, the Tutor is

actually implemented as a series of LOOPS classes and
objects. Thus, the Tutor’s logical units do not neces-
sarily correspond to specific programming segments.
The Expert, for example, is implemented as a series of
Shape Objects* which contain both the rules and
inference procedures used to deduce shape descriptors
from a set of orbital parameters. These Shape Objects
also contain the major concepts associated with the
ground track curriculum (the Curriculum). The State
Module contains a list of appropriate behaviors for
exploring the microworld. There is also a series of
methods** used to evaluate the student’s answer,
analyze student errors, and update counters. The Stu-
dent Model resides within the Expert Objects in the
form of counters and threshold values which reflect the
student’s current state of knowledge of both ground
tracks and effective tool use. Finally, there are a series
of Coaching methods that tell the system when to
intervene. The system makes its decision based on
information regarding the student’s current state of
knowledge. A more detailed deseription of each logical
unit is presented below.

The Expert

This module contains the rules and procedures
used to deduce shape descriptors Se.g., closed-body,
symmetrical, vertical; compressed, lean-right, hinge-
symmetry, with loops) from a set of orbital parameters
(eccentricity, period, semi-major axis, argument of
periapsis, inclination). The Expert is invoked only
when the student is making a shape or orbit prediction.
The general problem solving strategy employed by the
Expert is to determine a shape descriptor by examining
a specific orbital element. If this fails, then the system
looks at another shape descriptor and attempts to find
its value, or looks at a combination of two or more orbi-
tal elements to see if the system can deduce a shape
descriptor. For example, the Expert determines the
symmetry shape goal by asking whether this is a circu-
lar orbit. If the orbit is classified as a circular orbit,
then its eccentricity must be equal to zero. If the orbit
is elliptical then its eccentricity is not equal to zero and
the Expert must look at the orientation descriptor,
which in turn must look at the argument of periapsis.
In this manner, the Expert Module can determine a set
of shape descriptors for a given set of orbital parame-
ters (and vice versa). During the process of deducing
shape descriptors, the Expert also determines the
optimal “procedure” for deriving the shape descriptors.
Thus both declarative and procedural knowledge is
available to the rest of the tutor.

*Objects is a trademark for data types in the LOOPS
programming environment, Xerox, Corp.
**Methods is a trademark for procedures in the LOOPS
programming environment, Xerox, Corp.

At the implementation level, the Expert shape
descriptors are organized as classes and sub-classes
(Figure 3). The Expert operates by calling a “metal-
rule” that sends a message to all the objects to test the
rules associated with each of the objects and return the

values from the rules that are true. Along with the
Expert’s If...then rules, each object contains the defini-
tion, explanation templates, examples, special counters
indicating the number of times the student predicts the
shape descriptors correctly and incorrectly, tutoring
strategies, conflict resolution strategies, and special
buggy rules. This particular data proved to be a very
effective way of organizing the knowledge.

Another function of the Expert is to deduce
parameter descriptors (such as a Circular, Synchronous
orbit) at the same time that the system is deducing the
shape descriptors. These parameter descriptors are
used to determine the essential skills that are necessary
to understand a given ground track. Since the rules for
determining the Curriculum are used by the Expert
rules, we now describe the organization of the Curricu-
lum.

The Curriculum

Along with knowledge about shape descriptors for
ground tracks, a student must also understand how
this information relates to specific orbit types. For
example, an orbit which has a semi- major axis equal to
42,250 kilometers is said to be in a synchronous orbit.
This term applies to all ground tracks that have a
semi-major axis equal to 42,250 kilometers, regardless of
the numbers that might appear for the other orbital
parameters. Thus it is important that students recog-
nize the relationship between the specific domain
knowledge and the qualitative model produced by the
Expert. Therefore the System organizes this knowledge
in the Orbit Objects (Figure 4) which contain the
specific content that is used to categorize different orbit
types. The knowledge stored in the Orbit Objects is
then used (and deduced) by the Expert. For example,
the Expert System determines whether an orbit is cir-
cular or elliptical as it deduces the symmetry goal. The
knowledge about shapes and orbit types are an integral
part of the Expert.

This particular organization also provides a very
powerful tool for relating the content areas and for
determining various levels of difficulty. For example,
the rules that determine the shape descriptors associ-
ated with circular orbits tend to have fewer constraints
attached to them, and also tend to be fired first, and,
as a result, tend to be easier for the student to learn.
The hierarchy of orbit types as represented in the
Orbit Objects shows both the order that the knowledge
should be learned and the relationships between the
knowledge. This information can be used by to recom-
mend easier problems whenever the student becomes
confused.

The State Module

The State Module contains a list of goals and
subgoals which presumably indicate acceptable pro-
cedures for exploring the microworld. As the student
proceeds through each of the states, the tutor records
his/her actions. The authors have hypothesized that a
student indicates appropriate experimental behaviors if

explores a microworld by generating ground traces.
The student then moves on to “making predictions,”
follo'vged by testing and validating tests, and then gen-
eralizing these principles. Each one of these states, in
turn, has separate subgoals which may or may not be
met. The Tutor uses the State Module in two ways.
First, if the student is performing poorly, then the
Tutor checks to see if the student has proceeded
through each state in an appropriate manner. Second,
El_le system uses the State Module to reflect different
“instructional” strategies. For example, if the student
is <':ond'ucting experiments (as defined as “making pred-
ictions”) then the system gives a higher status to using
tools correctly. If the student is “testing,” then OM
will switch its strategy and try rules that check for skill
deficiencies.

The Student Model

The Student Model in embedded within the
Expert and Orbit shape Objects as a series of counters
that reflect the student’s current understanding of both
the domain knowledge and investigative behaviors.
Whenever the student tests a prediction, OM records a
list of the rules that the student understands. The
Stude_nt Model maintains a series of counters for each
rule m@icating the number of times a rule is used
appropriately, inappropriately, or ignored (a “missed-
opportunity” as defined in Carr and Goldstein, 1977).
If the missed-opportunity counter exceeds the used-
appropriate counter, then the Coach recommends
intervention.

The system also records the number of times that
an onhnq tool is invoked. In addition to this counter,
an effectiveness measure is maintained for the History
tool, the Orbit window, and the Definition/Example
too_l. If the student demonstrates inefficient behavior
as indicated by one of the effectiveness measures, then
the system intervenes and offers advice.

The Coaching Strategy

OM also maintains a series of rules and procedures
that direct the teaching portion of the Tutor. The
Ground Track Microworld is designed for two major
purposes: 1) to teach students about the relationships
between/among orbital elements and ground tracks,
and 2) to teach students how to use systematic
})eha.vwrs to investigate this domain. Thus, the system
intervenes when either one of these conditions is not
satisfied. The system monitors the student’s actions
and determines when the student needs advice. Inter-
vention occurs only when the student is making errone-
;)us predictions for either the Shape or Orbit descrip-
ors.

The general or high-level teaching strategy is as
follows:

If the student has made No errors
and if the student is completing

curriculum materials efficiently
then record progress

If the student has made No errors

and if the student is NOT completing
the curriculum materials
efficiently

then recommend an easier curriculum

79

If student has made error
then

a) Check ruleset for
satisfaction of preconditions

b) Check ruleset for
Correct Tool Use

¢) Check ruleset for
Skill remediations

The author made the general assumption that
when the student is in the Prediction Mode, then the
system should help students discover the objectives by
having them use the tools correctly. If this fails, then
the system should address individual skill errors. This
strategy is reversed whenever the student enters the
Orbit Prediction Testing State.

The system’s overall intervention strategy is to
check whether the student has completed the necessary
preconditions (as determined by the values stored in
the State Module). If the student has satisfied all the
preconditions for an exercise, then OM checks the
measures for effective inquiry skills. The list of effec-
tive .inquiry skills as originally defined in Shute and
Glasser [1987] include skills such as: Systematic experi-
mental behaviors such as making Predictions, asking for
Definitions and Examples or accessing the Orbit win-
dow.

Every time a student enters a prediction for Shape
descriptors or Orbital parameters, the system evaluates
the student counters and determines if intervention is
required. If the student’s effectiveness measures are
low, then the Coaching methods propose possible
remediation and offer assistance. In the event that the
student fails to attain a level of proficiency after receiv-
ing instruction on effective tool use, then the system
addresses the student’s domain knowledge inadequa-
cies.

At the present time, OM uses the information
stored in both the Tool Objects and the Expert Objects
to advise the student concerning errors. Initially, the
system suggests that the student use one of the avail-
able tools to correct his errors. If the student continues
to have difficulty, then the system may display the
definitions, examples or explicitly state the relation-
ships between various parameters.

Whenever you design and implement a computer
system, especially an Al system, you always discover
some interesting things about the problem that you
wish to share with colleagues and friends. This particu-
lar project proved NOT to be the exception to this
rule. As the Tutor took shape, and as we better under-
stood the domain, we learned several things that will be
helpful as we develop the NEXT tutor. What follows is
a discussion of some of these ideas.

Don’t be afraid to admit that you are ignorant.

Unfortunately, most people tend to believe that
they are all- knowing or, at the very least, too proud to
admit that they are not all-knowing. This can be a real
problem if your job is to design an expert system. One
of the reasons that you need to perform knowledge eli-
citation is that someone or something has more infor-
mation (and procedures) than anyone else. Thus, you
must perform the painful task of questioning the
Expert in order to “discover” the knowledge and pro-
cedures that are necessary to perform the task. This
requires that the Knowledge Engineer admit ignorance,

80

ask stupid questions, and generally try to become
student-like. This is a humbling experience and a diffi-
cult one at best.

It is better to be a software engineer than a
hacker...even in Al environments.

There is a basic myth among people that the
words "Alprogrammer” and "Hacker”are synonomous.
Despite such myths, we learned that it was absolutely
necessary to use “good” programming practices
throughout the development of the Tutor. Thus, the
Expert System was changed five times in pursuit of just
the “right” data structure. At each stage, we looked at
the code and asked if it could be easily maintained,
documented and understood. The final system fulfills
all of these requirements.

Experts do not always make good teachers.

We initially assumed that if our expert knew how
to solve the problem, then she would also know how to
teach people how to solve problems. This is not neces-
sarily true. One of the most important qualities of a
good teacher is that they are able to reduce most com-
plex problems to a series of very simple, clear pro-
cedures. Most good teachers have mastered the art of
explaining even the most complex of ideas. They have
also mastered the art of knowing what to say when stu-
dents make mistakes. In short, a good teacher can
make sense and order out of chaos. This particular
quality is not always present in most experts. They
may have performed a task or job because it "feels
right”, or “looks right.” Also, they don’t always know
what to say to a student when they get the problem
wrong. When this occurs, it is necessary to go find a
teacher who can tell you how to teach.

Computer programmers, not educators, develop intelli-
gent tutors.

There is a recurring theme in computer education
literature that the teacher should be able to sit down
at the computer and develop lessons, create interesting
curriculum, and program a computer to interact with
the student. This is what sold most people on the idea
of Authoring Systems for Computer Based Education.
It has also been proposed for the creation of Intelligent
Tutoring Systems. It is a worthy dream. Yet, the real-
ity of the situation is that programmers, not educators,
develop courseware. This is true for traditional
intelligent computer systems. Hopefully, this will
change at some future time. At the moment, we are
stuck with the fact that programmers, not educators,
develop curriculum.

SUMMARY AND FUTURE DIRECTION

The current ground track microworld uses a quali-
tative model to teach the basic concepts of orbital
mechanics. This microworld provides the student with
a discovery environment which allows him to explore
relationships between orbital parameters and ground
tracks. The microworld also has intelligence. It knows
about the domain, about how to estimate orbital
parameters from a ground track, and about how to use
the inquiry tools effectively to achieve goals. As a
result, if the student fails to make satisfactory progress
toward the stated goals, then the system intervenes
and offers appropriate assistance. This type of intelli-
gent simulation provides a more active and adaptive
environment for reinforcing training skills.

C-a

The initial prototype is now complete and has
been formatively evaluated by members of the NORAD
crew and instructors at the Space School. The authors
performed further tests during the Spring Semester of
’87 with students from the Space School at Lowry Air
Force Base to determine if the Tutor is more effective
than traditional classroom experience. This data will
also be used to improve the diagnostic portion of the
tutor.

Several areas of research are currently being inves-
tigated. Because one of the primary purposes for
developing this Tutor was to create a vehicle for testing
hypotheses for training effectiveness, we want to inves-
tigate specific questions dealing with this area such as:
What happens in an instructional environment when
you vary the order of the State Module? (Is it better
to state a hypothesis and then conduct experiments?)
What happens in the instructional environment when
you vary the order of remediation? (Tool use versus
Skill Diagnosis?) Finally, how can the information we
obtain from these studies be made a dynamic part of

Ortit. Window
View Along the Line of Nodes

Vernal £quinox Direction

185 150 135 128 105 90 7S 60 % 36

the system so that it can adapt to individual student’s
needs? These and other issues will be explored in the
coming months and should contribute to our under-
standing of how to build more effective training sys-
tems.

ACKNOWLEDGEMENTS

The authors would also like to thank the instruc-
tors and students at the Unified Space Training School
(UST) for their assistance with this project.

REFERENCES
Astronautics 332. USAF Academy, Colorado, 1985.

Bates, Roger, Mueller, Donald and White, E. Funda-
mentals of Astrodynamics. Dover Publications,
New York, 1971,

Carr, B., Goldstein, Ira. Overlays: a theory of model-
ling for Computer Aided Instruction. MIT Al
Memo 406 Memo 40, 1977.

Shute, Valerie, and Glasser, Robert. An Intelligent
Tutoring System for Exploring Principles of
Economics. In Press.

Detuition Window

View Perpendicular to the Orbital Plane

Semi-Major Axis (a)

M S R O YT O SRR TE ¥
A Ary n i 38 IhtE. e, e

7S 90 105 126 135 158 185

T

Clear Display
Orbit Window [
LY

Trace Prediction

Orbit Prediction

New Student

|

A

batitiude

Wi
o

Longitude

1
] |
! 1
!

B

Acunuth

.

Semi-major Axis

£ coentricity

15 8 15 38 45 68 7S 90 195 120 135 150 185

Orbital Parameters

Ary of Periger Ascending Node

Figure 1:

Generate Trace Window

Example Window

Expanded Ground Trace

13 j[l T

:
L
s M
1
1

N

NI

N

Ground Trace Prediction
Shape State Symmetry Orentation Anomalies
Expanded Line and Hinge Large Lobe North

Gosed ooty B woeow Fight Lean
Compressed Hinge Only Left Lean

Large Lobe South

Line Or Dot No Symmetry

. Ground Trace Expert

Shape State Symmetry Orientation Annnalies

’ Orbital Parameters

Semi-major Axs Perioed Froentricity nclination Arg of Perigee Ascending Node
261

Figure 2: Trace Prediction

Class Inheritance Lattice

DescriptorMixin
CategoryMixin B -:H-—-H"-—
s Ry e

g :- -, T—

N LargelLobeNorth
" \\\%\%\ (é\\}%-/ L . LobeSouth
n&parnd argel.obeSou

’ %\ Q“\Q\ S 9

N B NoAnornal;
N oanemaly
\3;‘;\3\:\\\ . Left

> Origrdation X Right
. WA S,
\ \\“ Vertical
O\
> ClosedBody
i—\ Cormpressed

Expanded
\ LineOrDot
HingeOnly
LineAndHinge
Syrnmetry .
LineOnly

NoSymrnetry

Figure 3: Shape Objects

82
ORIGINAL PAGE I3
OE POOR QUALITY

Glass Inheritance Lattice)

; AscNode
.~ Circular
; Eccentricity <C__ . -~ AlrnostCircular
~-— Eccentric =<2 .
~— VeryEccentric
! ! ~ Direct

[/

f)

. 0 -~ -
/ Inclination \% inclined

-~ Equatorial
N
™. ~Polar
~,
™ Retrograde
¢+ Ascending .

ing}
Descending
/
/ ¢
/ ;j North

. AscendingNorth

% —— DescendingNorth

éﬁ-akmorth

; AscendingSouth

i TN

Ly P&akSouth
AscendingNode
DescendingNode
\ Vperiod

_~ HighAltitude ———— VeryHighaititude
) - SerniSynchronous
l"'Semirrmjor)\xis - LowAltitude {:::“‘- VeryLowAltitude

NotSynchronous

- Synchronous
T e s B 404400 Litiisi d4r o e S S taasad 4sae i I pa T -

Figure 4: Orbit Objects

83

N88-17218

NEURAL NETWORK BASED ARCHITECTURES FOR
AEROSPACE APPLICATIONS

by

Richard Ricart, 2Lt
System Avionics Division
Avionics Laboratory
Air Force Systems Command
United States Air Force
Wright-Patterson Air Force Base, Ohio

ABSTRACT

The recent fervor and reemergence of research in
neural networks has its reasons. The most important are
the ability of these systems to store vast numbers of
complex patterns, the ability to recall these patterns in
QO(1) time (i.e., speed of pattern retrieval is independent
of number of stored patterns), and the ability to recall
these stored patterns using fuzzy or incomplete cues.

In this paper, a brief history of the field will be
reviewed and some simple concepts will be described.
In addition, some neural network based avionics re-
search and development programs will be reviewed.
The concluding remarks will stress the need for the
United States Air Force (USAF) and the National
Aeronautics and Space Administration (NASA) to as-
sume a leadership role in supporting this technology.

INTRODUCTION

The System Evaluation Branch of the Avionics
Laboratory at Wright-Patterson Air Force Base is cur-
rently working under a charter to transfer learning re-
search to exploratory development of intelligent
electronic combat systems. Neural networks have been
identified by this group as having great potential for
solving a variety of difficult problems encountered in
military avionics.

The purpose of this paper is to show the need for new
approaches in developing intelligent systems for the
USAF. It can be argued that this need also applies to
NASA and the aerospace industry in general. The ar-
gument for why neural networks have the potential for
satisfying this need will be given by introducing some
important properties of neural networks. A brief his-
torical perspective of the field and the current trends in
the technology will also be provided. In addition, a
brief description of the research and development
programs being conducted and planned by the Software
Development Group will be given.

NEED FOR NEW APPROACHES IN THE AIR FORCE
TO DEVELOPING INTELLIGENT SYSTEMS

The environments in which our military aircraft and
weapons systems must operate in have become increas-
ingly complex and hostile with the advancement of
technology. Survival will depend on developing

85

autonomous, flexible avionics systems that can adapt

and learn from a highly dynamic and hostile
environment. However, this is a tremendous challenge
due to the complexity of these systems and their
environments. The usual problem domains encountered
in electronic combat systems, for example, can be
characterized as follows: A usually small number of
resources must be managed and allocated to satisfy mul-
tiple constraints and optimization criteria. These sys-
tems are capable of multiple responses under multiple
threat and/or target environments. Changes to the en-
vironment usually occur very rapidly and sometimes
unexpectedly. These systems must process a tremendous
amount of information under conditions of novelty,
deception, incomplete data, and noise. A further crucial
requirement is that these processes must be accomplish-
able in real-time.

Artificial Intelligence (AI) is one approach to develop-
ing "intelligent” systems, but current Al technology has
many limitations. The problem domains under which
most Al technology has been developed are very dif-
ferent than the problem domains of many military and
aerospace applications. The problem domains most ex-
pert systems have dealt with have been quite narrow,
ideal, and free of noise. Most importantly, processing
time has not been a critical factor. Al and other tradi-
tional problem solving techniques have had difficulty
dealing with many areas such as machine vision,
automatic target recognition, situation assessment, and
resource planning and control, to name a few. The real-
time constraints have been one of the factors contribut-
ing to the difficulty in developing AI based solutions to
the problems mentioned above.

O'Reilly & Cromarty (1985) have formally defined real-
time system performance as the requirement that a
system’s response to environmental stimuli occur in
provably finite time (i.e., O(1) time response). The
authors show that current Al and traditional problem
solving approaches cannot prove this time response and
g0 on to say:

"...our analysis indicates that there is no reason to
expect conventional system design approaches
from either school to yield effective, provable
real-time performance."

They further propose that parallelism is one way of
achieving this performance.
This analysis is consistent with the general acceptance

It

"LECEDING PAGE BLANK NOT FILMzD

in the AI community for the need of parallelism in
their problem solving approaches.

There has been considerable work in recent years in
parallel processing, but developments in hardware have
far outstripped the programmers ability to effectively
use these systems. We are having problems developing
parallel algorithms. This problem is exemplified by the
title of a recent paper, Programming for parallelism:
The state of the art of parallel programming and what a
sorry state that art is in (Karp, 1987).

Because of the limitations and slow progress in current
Al research and development, especially as it relates to
real-world military and aerospace operations, there has
been a growing need to re-evaluate research strategies.
One alternative approach which has a strong potential
for satisfying the Air Force’s need for intelligent
systems, is neural networks.

NEURAL NETWORK SYSTEMS: THEIR
PROPERITIES

Neural networks have properties which seem to offer
solutions to many of the difficult problems encountered
in machine learning, vision, speech, pattern recognition,
and real-time resource planning and control. These
properties are all interrelated, making it difficult iden-
tify the most important one. The remainder of this sec-
tion will concentrate on explaining these properties.

Most neural networks are modeled after or resemble
some of the structure and function of biolggical brains
and nerve cells (neurons), thus their name. These sys-
tems are composed of interconnected processing ele-
ments (PEs) or "neurons" which process information in
parallel. The PEs have multiple inputs (from the output
of other neurons or from external stimuli) and a single
output. This output may in turn branch out to yet other
PEs or the outside world. Neural networks are in-
herently parallel processing systems.

An important class of neural networks have the ability
to learn and adapt in response to environmental
changes. In these neural networks, the PE’s have self
adjusting weights associated with their input channels
(i.e., the conductance of the interconnections change
with experience). This self adjusting of network
parameters is the basis of learning in neural networks
and is one of the most important characteristics of these
systems.

One very useful way of interpreting the dynamics of a
neural network is as an energy field undergoing changes
over time. One can think of this energy field as a flat
sheet (it is actually a multidimensional surface). As the
network interacts with its environment, wells or basins

‘Although there is still considerable disagreement
among psychologists on the principles of information
processing of the brain, and many neurological func-
tions and cellular mechanisms have not been resolved,
mathematical models of certain structures and functions
of the brain have been developed with characteristics
similar to known neurological functions.

86

are created or formed on this flat sheet over time. If
the job of the network is to identify or categorize sig-
nals of some kind, these wells represent the learned
categories. The input stimuli can be thought of as
marbles. As new marbles (input stimuli) fall onto this
contoured sheet (energy field), the marbles will roll into
the closest basin. Marbles that fall into a particular
well are similar to the marbles that created the well to
begin with, This brings us to the next set of related
properties of neural networks. These systems are
capable of associating arbitrary input states with the
nearest energy basin (identification, category, or
response). In addition, these systems decide what the
appropriate features of the input states are in order to
make the classifications or responses. Therefore, neural
networks can act as associative memories, nearest
neighbor pattern classifiers, and feature detectors
(Kohonen, 1984; Kosko, 1986 and 1987a).

A very important result in neural network research, the
Cohen/Grossberg Theorem (Cohen & Grossberg 1983),
was popularized in a similar finding by Hopfield (1982
and 1984). This theorem states that the energy of a
class of neural networks, called Crossbar Associative
Networks (CANS), converges to a finite set of equi-
librium points. The energy of the system is defined as a
global Liapunov function and the equilibrium points
are the local minima of that function. Not only is con-
vergence guaranteed, but the time required to converge
to those equilibrium points does not depend on the
number of those points. In other words, CANs respond
in O(1) time. This is a characteristic of every neural
network.

Just as in conventional Al programs, knowledge repre-
sentation is of utmost importance in neural networks.
But knowledge is distributed throughout a massively in-
terconnected processor architecture. For example, a
certain neural network might have the concept of an
airplane represented in its network. That concept will
be distributed among many PEs and each PE will con-
tain small pieces of information about other concepts;
maybe tank, helicopter, jeep, etc. Due to the networks
ability to utilize distributed knowledge representations
which are supported by massive numbers of parallel
elements, these networks are fault tolerant. Neural
networks have been shown to exhibit graceful degrada-
tion of performance as more PEs become inoperative
(Anderson, 1983). One can understand why this occurs
from the example of the airplane above. If one or two
elements which contain information about that airplane
are damaged, the remainder of the network may contain
enough of the concept “airplane” to use that information
effectively in some type of process. If any piece of
hardware or software in conventional computers be-
comes corrupted, there will be system failure.

‘Many networks have been developed in which
knowledge was not distributed. Each PE represented
one and only one concept. In these experiments other
properties and capabilities of neural networks were
being examined which did not require distributed
representations.

One final, very important characteristic which is sure to
have a considerable impact on the aerospace industry, is
that these systems process information without the use
of computer programs. What is required is the
specification and development of an architecture of in-
terconnected PEs for a given problem. Each PE of the
neural network is governed by a system of
mathematical equations which can be implemented
directly in electronic circuitry. After an architecture is
defined, the neural network is then put through a train-
ing or learning stage. It is in this stage that the system
learns the appropriate I/O mappings with either the
help of a "teacher" or "critic", or on its owp if enough a
priori information is built into the system. Still
other systems can learn continuously as they interact
with their environments.

Before leaving this section, a brief, high level descrip-
tion of the mathematical equations governing a neural
network will be given. The typical PE is governed by
usually two or three differential equations (or dif-
ference equations when dealing in discrete time). One
equation determines the activity or state of the PE,
another determines the change in conductances (or the
final values of the conductances after the network
settles to a stable state) of the PE’s input channels, and
the third equation determines the output of the PE.
When the PEs are governed by two equations, the ac-
tivity of the PE is usually incorporated into the output
equation. The activity equations are usually some func-
tion of the sum of the weighted inputs. The output
equations are usually a nonlinear function of the ac-
tivity (either sigmoid or linear threshold). And the
change in input conductances are usually some function
of the inputs, output, and the conductances themselves.

These dynamical equations come in a variety of forms
which have either evolved or have been added over the
years to give us a large and rich repertoire today. This
variety reflects the diverse and interdisciplinary back-
ground of the researchers in the field: neuroscience,
psychology, physics, mathematics, engineering, and
computer science.

A number of important attributes of neural networks
have been discussed. It must be emphasized, however,
that the engineering process of developing architectures,
especially for real world problems, is still in its infancy.
Convergence theorems for many classes of important
neural networks have not been found. Fortunately, we
do have enough empirical data to suggest that conver-
gence proofs to some of these systems may be found.
Other problems include strict limits on the amount of
data storage imposed on a neural network of given size
and the ability of associative memories to create
spurious energy minima (Kosko 1987a). The important
point to stress is that neural networks offer a tremen-
dous potential for solving many difficult problems
which solutions have not been previously, or acceptably
found. But before this potential is realized, much work
needs to be done.

.More detailed discussions on the different classes
of learning and how these are accomplished in neural
networks are discussed in Duda & Hart (1973), Barto &
Sutton (1981), and Barto (1985).

87

HISTORY AND CURRENT TRENDS

In this section, a brief history and the current trends in
neural network research will be introduced in order to
give a general feel for the field. For a comprehensive
review see Levine (1983). Barto (1984) also presents a
more in depth review than the one found here. Prob-
ably the best introduction to neural networks is
provided by Rumelhart, et al (1986). This work also in-
cludes research more appealing to those with Al and
cognitive science backgrounds.

The early concepts of processing information by a net-
work of simple linear threshold elements were intro-

duced by McCulloch and Pitts (1943). They developed
very simple linear threshold processing elements with

boolean output which were interconnected via positive
and negative input lines. Their results generated much
excitement for they showed any logical function could
be performed by some configuration of such networks.

The next major milestone was achieved by Hebb (1949)
when he postulated a mechanism for long term memory.
This mechanism required a structural change to the
neuron:

"When the axon of cell A is near enough to

excite a cell B and repeatedly or persist-

ently takes part in firing it, some growth

process or metabolic change takes place in

one or both cells such that A’s efficiency,

as one of the cells firing B, is increased

(Hebb, 1949, p. 64)"

This hypothesis was later interpreted mathematically as

d w.= X:y
dt 1 1

where w; is the weight associated with the ith input to
the neuron, x; is the ith input signal from another
neuron, and y is the output of the neuron in question.

This rule has had a tremendous impact on neural net-
work research for it has been used in one form or

another in virtually every learning neural network
conceived.

It wasn’t until the late 50s and early 60s that neural
networks were developed along the lines in which we
are familiar with today. McCulloch and Pitts’ ideas of
interconnected linear threshold elements and Hebb’s
ideas of long term memory were integrated into very
useful devices. Two such systems deserve special
attention: The Perceptron, developed by Rosenblatt
(1962) and the Adaline (for adaptive logic element),
developed by Widrow (1962). Both of these systems
were similar in that they were based on a single adap-
tive layer of neurons and on an error correcting
mechanism. The difference between the desired
response and the actual response was fed back to the
adaptive layer through a series of training trials until
the network converged to a solution in provable finite
time.

Unfortunately for Rosenblatt and for neural network
research for the next 20 years or so, Rosenblatt made
claims which seemed unfounded to several of his
contemporaries. This led to Minsky and Papert’s (1969)
critical response to the Perceptron (see Rumelhart, et al,
1986, pp. 151-159). Minsky and Papert showed a number
of limitations of single layered adaptive networks and

also raised the issue of the credit assignment problem in
multilayered networks of error correcting elements.

The credit assignment problem arises as a result of the
inability of cells within the interior layers of the net-
work to know what fraction of the total error they are
responsible for. These problems have been solved in a
variety of ways since then (Parker, 1982 and 1985, and
Rumelhart, et al, 1985), but in those days they raised
alarming questions.

Minsky and Papert’s book was devastating to Rosenblatt
and neural network research. The book was a sign to
many that research should be directed towards symbolic
processing and heuristics. This approach is what we
know as Al today. The push for this approach was also
being heavily influenced by the growing field of cogni-
tive psychology (for a historical view from this perspec-
tive see Gardner, 1985). At this same time, behaviorist
psychology was in decline. This also helped sway re-~
search funds away from neural networks since the
issues involved in neural networks were highly reminis-
cent of the issues the behaviorists were grappling with:
stimulus/response chains, reinforcement, and behavior
based on microstructural concepts.

Widrow, on the other hand, was extremely successful
applying his Adaline and Madaline (for many Adalines)
to signal processing. His adaptive signal processing
techniques have been applied to system modeling (i.e.,
imitating system behavior), inverse system modeling,
adaptive control systems, adaptive interference
canceling, and to adaptive antenna arrays (Widrow,
1985). 1t is also interesting to point out Widrow’s
achievements in the 60s. His Knobby Adaline (a
hardware implementation of his adjustable threshold
element, Widrow 1962) was able to recognize patterns
regardless of noise (10%), rotation (90 degrees), left and
right translation, and size (25%). The Avionics
Labgratory, at Wright-Patterson Air Force Base owns a
film of a pole balancing experiment performed by
Widrow. A small cart with a pole attached to the top of
the cart by a pivot was placed on a short track. The
Madaline was able to keep the pole balanced by control-
ling the cart’s movement after a series of training trials.
In that same film, Widrow’s students are shown training
a Madaline to translate spoken words in three languages
to type written English. One may wonder whether the
neural network "nuclear winter" that ensued would have
taken place if these results would have been marketed
as vigorously as the limitations to the technology at the
time.

Although neural network modeling fell from grace after
Minsky and Papert’s book, very important work con-
tinued throughout the 70s. Fukushima (1975) and von
der Marlsburg (1973) developed systems based on the
visual structures of biological brains. Kohonen (1972)
and Wilshaw, et al (1970 and 1971) were early pioneers
in the area of associative memories. Amari, et al (1974
and 1977) made an important contribution through his
research in associative memories and their relation to
thermodynamics. Klopf (1972 and 1979) introduces the
concept of the neuron as a goal oriented or goal seeking
agent (heterostat). Rescorla and Wagner (1972)
developed a model which exhibited a variety animal
learning phenomena.

*The USAF supported Widrow’s research as well as
other neural network research in those early days.

88

The most prolific contributor to this field has been
Stephen Grossberg, of the Center for Adaptive Studies,
at Boston University. Grossberg has addressed all the
main issues in neural networks from 1967 (Grossberg,
1967) to date in approximately 130 papers and 4 books.
He has approached his research with rigorous mathe-
matics and has proved some of the most important
theorems in the field. He has investigated and written
about memory, animal learning behavior, cognition,
speech, language, vision, and motor control. He’s col-
lected his most important work in three volumes
(Grossberg, 1982, 1987a, and 1987b).

John Hopfield of Caltech and Bell Labs is, perhaps, the
one most responsible for reigniting the field. In two ar-
ticles (Hopfield, 1982 and 1984), Hopfield, expanding
on previous work on crossbar associative networks
(CANs), made connections between CANs and Ising spin
glass models of ferromagnetism. Hopfield's papers
made a strong impact on the physics and optics com-
munity in a series of conference presentation. Hopfield
and Tank (1985) further publicized the information
processing capabilities of neural networks by develop-~
ing a CAN system which had the ability to find near
optimum solutions to a traveling salesman problem. In
other words, they developed an O(1) time approximate
solution to a NP-hard problem using neural networks
(see Hecht-Nielsen, 1986 for this discussion). Interest in
the field has mushroomed in academia, the Department
of Defense, and throughout the aerospace industry since
Hopfield’s 1982 paper.

Today, theoretical work continues at a fast pace from
many of the original pioneers mentioned above and
from scores of others entering this exciting field. Over
200 papers were presented in 16 sessions at the Institute
of Electrical and Electronics Engineers (IEEE) spon-
sored First Annual International Conference on Neural
Networks in San Diego, California, between the 21st
and 24th of June, 1987. Nearly 2,000 people were at-
tracted to this event. The 80s have also brought much
needed work in the hardware implementation of neural
networks. In the past, almost all work was simulated on
general purpose computers. Experiments could run for
days in those early years. Special purpose processors are
coming to market today which can significantly in-
crease processing speed. For many applications, these
are sufficient for real-time processing. For more dif-
ficult problems such as vision or target recognition,
much larger networks will be required. If these net-
works are to be flown in spacecraft and aircraft, they’ll
have to be implemented in silicon, optics, or a combina-
tion of both. Fortunately, work is well under way ad-
dressing this need. The following is only a small sam-
pling of optical and electronic neural network research:
Cruz-Young & Tam, 1985; Dunning, et al, 1986; Graf &
deVegvar, 1987a and 1987b; Fisher, et al, 1986; Psaltis
and Abu-Mostafa, 1985; Psaltis and Farhat, 1985;
Sivilotti, 1985; and Soffer, 1986.

SYSTEM EVALUATION BRANCH’s (AAAF) R&D EF-
FORTS

Basic research in neural networks has matured to a
point suitable for translation into exploratory
development. AAAF’s efforts are aimed at advancing
neural network research in both the signal processing
and cognitive processing areas for avionics applications.

The ultimate goal is to merge both areas of research and
develop the technology for providing intelligent
avionics sensor systems for the USAF. We are specifi-
cally addressing the avionics domain from the level of
sensors and emitters in electronic combat applications.
This research is part of a long term program, Intelligent
Avionics, which is in general addressing the issue of
making avionics adaptive. Both contracted and in-
house efforts will be conducted under this program.

Two contracts are currently being managed in the

neural network area. The first is the Adaptive Network
Cognitive Processor (ANCP), a one year effort which was
awarded to TRW in San Diego, California. The purpose
of this program is to develop a prototype system which
builds an inner model of its environment in the form of
cognitive maps and uses this model for reasoning,
planning, or problem solving. The exact problem
domain is a high level situation assessment and response
system for pilot aiding. This is a "proof of concept”
program. A TRW Mark III neurocomputer is being used
for neural network design and simulation and will be
delivered as part of the prototype.

The second program, the Adaptive Network Sensor
Processor, will apply neural network

associative memory and pattern recognition technology
to a military radar warning system for providing
identification, categorization, and classification of pre-
viously experienced and novel radar signals in a noisy
and corruptive environment. A comparison between
this new approach to radar signal identification and
conventional means of signal processing will be ac-
complished before system delivery. There are two con-
tractors working on this program: Booz-Allen &
Hamilton, Inc. from Arlington, Virginia and Texas In-
struments from Dallas, Texas. A Hecht-Nielsen
Neurocomputer Company (HNC) ANZA neurocomputer
will also be used by Booz-Allen & Hamilton. Texas In-
struments will be using their array processor board, the
Odyssey, in conjunction with their Explorer work sta-
tion for developing and simulating the neural network
and environment.

Follow-on efforts for both of these programs are being
planned. The Adaptive Network Avionics Resource
Manager (ANARM) will apply what is learned in ANCP
to a specific electronic combat system. The Adaptive
Network Radar Signal Processor will integrate ANSP
with a response module to provide closed loop learning.
Hardware implementation issues will also be
investigated. These programs are scheduled to start in
fiscal year 1988 and fiscal year 1989 respectively.

In-house research is also being conducted under a
program entitled Real-time Adaptive Avionics. As part of
this effort, a neural network design tool was developed
and implemented on an LMI (now Giga Mos) Lambda
LISP Machine. The Artificial Neural Design Environment
(ANDE) has been used to investigate the application of
Klopf’s (1986) Drive-Reinforcement Neuronal Model to
a simulated avionics control problem. The ultimate goal
of this research is to transfer a neural network architec-
ture to electronic combat groups which can perform
real-time, adaptive resource management and control.
Support for this research is being pursued from the Air
Force Office of Scientific Research (AFOSR).

89

CONCLUSION

The United States Air Force and the National
Aeronautics and Space Administration should assume a
leadership role in advancing neural network research
and development efforts because of the tremendous
potential for providing adaptive, fault-tolerant
aerospace systems. We have available to us a viable
technological alternative which offers potential solu-
tions to such complex problems as data fusion, machine
vision, automatic target recognition, resource planning
and control, and adaptive system control. The impor-
tant characteristics of neural network, which are sum-
marized below, must be exploited and used in innova-
tive ways in order for this potential to be realized.
Neural networks are parallel processing systems that can
respond in O(1) time. These systems can learn and
adapt to their environment and are fault tolerant to
damage. And finally, neural networks can process in-
formation without the need of computer programs. The
foreseen software explosion and crisis could be
diminished or alleviated.

Neural network technology will not supplant current
computer science and software development where these
are more appropriate. Rather, hybrid systems are envi-
sioned with each technology performing what it does
best. New developments in neural network technology,
however, have the potential to revolutionize and greatly
enhance intelligent information processing for our
country’s defense and space science. It is also clear that
the USAF and NASA should steer the research efforts
in this area in order that neural network technology
develops in a manner suited to aerospace requirements.
The System Evaluation Branch of the Avionics
Laboratory at Wright-Patterson Air Force Base is com-
mitted to develop and exploit this "new" technology for
developing intelligent avionics systems.

ACKNOWLEDGEMENTS

Special thanks to Lt Mark Peot for his valuable com-
ments and assistance,

REFERENCES

Amari, S., "A Method of Statistical Neurodynamics”,
Kybernetik, Biological Cybernetics, 1974,
Vol. 14, pp. 201-225.

Amari, S., Yoshida, K. and Kanatani, K.,"A
Mathematical Foundation for Statistical
Neurodynamics”, STAM J. Appl. Math, Vol. 33,
No. 1, 1974, pp. 95-126.

Anderson, J.A. "Cognitive and Psychological
Computation with Neural Models",
Transactions on Systems, Man, and
Cybernetics, Vol. SMC-13, No. 5, Sept/Oct,
1983, pp. 799-815.

Barto, A.G., ed., "Simulation Experiments with Goal-
Seeking Adaptive Elements", Air Force
Wright Aeronautical Laboratories/ Avionics
Laboratory Technical Report AFWAL-TR-84-1024,
Wright-Patterson AFB, OH., 1984.

Barto, A.G., "Learning by Statistical Cooperation of
Self -interested Neuron-like Computing
Elements", Human Neurobiology, Vol. 4, 1985, pp.
229-256.

Barto, A.G. and Sutton, R.S., "Goal Seeking Components
for Adaptive Intelligence: An Initial
Assessment”, Air Force Wright Aeronautical
Laboratories/ Avionics Laboratory Technical
Report AFWAL-TR-81-1070, Wright-Patterson
AFB, OH., 1981.

Cohen, M. and Grossberg, S., "Absolute Stability of
Global Pattern Formation and Parallel
Storage by Competitive Neural Networks", JEEE
Trans. of Sys., Man, and Cybernetics, SMC-13,
1983, pp. 815-926.

Cruz-Young, C. and Tam, J.Y., "NEP: An Emulation
Assist Processor for Parallel Associative
Networks", IBM Palo Alto Scientific Center
Report No. 6320-3475, 1985.

Dunning, G.J., Marom, E., Owechko, Y., and Soffer,
B.H., "Optical Holographic Associative Memory
Using a Phase Conjugate Resonator”, Proc. SPIE,
1986, p. 625.

Duda, R.O. and Hart, P.E., "Pattern Classification and
Scene Analysis", Wiley, New York, 1973.

Fisher, A.D., Jukuda, R.C. and Lee, J.N,,
"Implementation of Adaptive Associative Optical
Computing Elements", Proc. SPIE, 1986, p. 625.

Fukushima, K., "Cognitron: A Self-Organizing Multi
Layered Neural Network", Biol Cybernetics, 20,
Nov., 1975, pp.121-136.

Gardner, H., "The Mind’s New Science”, Basic Books, Inc.,
New York, 1983.

Graf, H.P., and deVegvar, P., "A CMOS Associative
Memory Chip Based on Neural Networks",
Digest, ISSCC, Vol. 304, New York, 1987a.

Graf, H.P., and deVegvar, P., "A CMOS Implementation
of a Neural Network Model", Proc., Stanford
Conf. Advanced Research in VLSI, March, MIT
Press, 1987b.

Grossberg, S., "Nonlinear Difference-Differential
Equations in Prediction and Learning Theory",

Proc., Nat'l Acad. Sci., Vol. 58, 1967, pp. 1329-1334.

Grossberg, S., "Studies of Mind and Brain”, Boston:
Reidel Press, 1982.

Grossberg, S. ed., "The Adaptive Brain I: Coginition,
Learning, Reinforcement, and Rhythm”,
Amsterdam: North-Holland, 1987a.

Grossberg, S. ed., "The Adaptive Brain I1: Vision, Speech,
Language and Motor Control”, Amsterdam: North-
Holland, 1987b.

Hebb, D.O., "The Organization of Behavior”, Wiley, New
York, 1949.

Hecht-Nielsen, R., Technical paper "Artificial Neural
Systems Technology”, Unpublished technical
paper, TRW,Rancho Carmel Al Center, San
Diego CA., 1986.

Hopfield, J.J., "Neural Networks and Physical Systems
with Emergent Collective Computational
Abilities”, Proc., Nat'l Acad. Sci., Vol. 79, 1982, pp.
2554-2558.

Hopfield, J.J., "Neurons with Graded Response Have
Collective Computational Properties Like
Those of Two-State Neurons", Proc. Nat'l Acad.
Sci., Vol. 81, May, 1984, pp. 3088-3092.

Hopfield, J.J. and Tank, D.W., "Neural: Computation of
Decisions in Optimization Problems”, Biol
Cybern., Vol. 52, 1985, pp. 141-152.

Karp, A.H., "Programming for Parallelism: The State of
the Art of Parallel Programming and What a
Sorry State That Art Is In", Computer, Vol. 20,

No. 5, Computer Society of the IEEE, 1987, pp.
43-57.

Klopf, A.H., "Brain Function and Adaptive Systems: A
Heterostatic Theory", Air Force Cambridge
Research Laboratories Research Report AFCRL-72-
016 4, Bedford, Mass, 1972..

Klopf, A.H., "Goal-Seeking Systems from Goal-Seeking
Components”, Cogn and Brain Theory Newsl. 3,
No. 2., 1979.

Klopf, A.H., "A Drive-Reinforcement Model of
SingleNeuron Function: An Alternative to the
Hebbian Neuronal Model", In J.S. Denker (Ed.),
Neural Networks for Computing, AIP Conference
Proceedings 151, New York: American Institute
of Physics, 1986, pp. 265-270.

Kohonen, T., "Correlation Associative Memories", I[EEE
Transactions on Computers”, Vol. C-21, 1972, p.
353.

Kohonen, T., "Self-Organization and Associative Memory",
Springer-Verlag, New York, 1984.

Kosko, B., "Fuzzy Associative Memories", In A. Kandel
Ed., Fuzzy Expert Systems, Addison-Wesley, 1986.

Kosko, B., "Bidirectional Associative Memories" Proc.,
SPIE: Image Understanding, Vol. 758, Jan, 1987a.

Kosko, B., "What is an Associative Memory?" In review,
1987b.

Levine, D.S., "Neural Population Modeling and
Psychology: A review", Mathematical
Biosciences, Vol. 66, 1983, pp. 1-86.

McCulloch, W.S. and Pitts, W., "A Logical Calculus of the
Ideas Immanent in Nervous Activity", Bulletin of
Mathematical Biophysics, Vol. 5, 1943, pp. 115-133.

Minsky, M.L., and Papert, S., "Perceptrons: An
Introduction to Computational Geometry”,
Cambridge, MA: MIT Press, 1969.

O'Reilly, C.A. and Cromarty, A.S., "Fast Is Not Real-
Time: Designing Effective Real-Time Al
Systems, Applications of Artificial Intelligence II",
Proc. SPIE 548, 1985, pp. 249-257.

Parker, D.B., "Learning Logic", Invention Report, 581-64,
File 1, Office of Technology Licensing, Stanford
University, Oct, 1982,

Parker, D.B., "Learning Logic", TR-47, Center for
Computational Research in Economics and
Management Science, MIT, April, 1985.

Psaltis, D. and Abu-Mostafa, Y.S, "Computation Power
of Parallelism in Optical Computers”, California
Institute of Technology", 1985.

Psaltis, D. and Farhat, N., "Optical Information
Processing Based on an Associative-Memory
Model of Neural Nets with Thresholding and
Feedback", Optics Letters, Vol. 11, Feb, 1985,
pp.118-120.

Rescorla, R.A. and Wagner, A.R., "A Theory of
Pavlovian Conditioning: Variations in the
Effectiveness of Reinforcement and Non-
Reinforcement”, In Black, A.H. and Prokasy, W.F.
Eds., Classical Conditioning II: Current Research
and Theory, Appleton-Century-Crofts, New
York,1972.

Rosenblatt, F., "Principles of Neurodynamics”, Spartan
Books, Washington, 1962.

Rumelhart, D.E., Hinton G.E., and Williams, R.J.,
"Learning Internal Representations by Error
Propagation”, Institute for Cognitive Science
Report 8506, UCSD, Sept,1985.

Rumelhart, D.E., McClelland, J.L., eds., "Parallel
Distributed Processing”, I & II, Cambridge: MIT
Press, 1986.

Sivilotti, M., Emerling, M., and Mead, C., "A Novel
Associative Memory Implemented Using
Collective Computation", Proc. Chapel Hill
Conference on VLSI, 1985.

Soffer, B.H., Dunning, G.J., Owechko, Y., and Maron, E.,
"Associative Holographic Memory with Feedback
Use Phase-Conjugate Mirrors", Optics Letters, 11,
Feb, 1986, pp. 118-120.

von der Marlsburg, C., "Self Organization of Orientation
Sensitive Cells in the Striate Cortex", Kybernetik,
Vol. 14, 1973, pp. 85-100.

Widrow, B., "Generalization and Information Storage in
Networks of Adaline "Neurons™, In Yovits, M.,
Jacobi, G., and Goldstein, G., Eds., Self-
organization systems, Spartan Books, 1962, pp.
435-461.

Widrow, B., "Adaptive Signal Processing", Prentice-
Hall,Inc., Englewood CIiff, N.J., 1985.

91

Wilshaw, D.J., "Models of Distributed
Associative Memories”, Ph.D. Thesis, University of
Edinburgh, 1971.

Wilshaw, D.J. and Longuet-Higgins, H.C., " Associative
Memory Models", in B. Meltzer and O. Michie
Eds., Machine Intelligence, Edinburgh: Edinburgh
University Press, 1971.

N8§8-17219

DEVELOPMENT AND EXPERIMENTATION OF AN
EYE/BRAIN/TASK TESTBED

Nora Harrington, Ph.D., Analytics, Willow Grove, PA

James Villarreal, NASA/JISC, Houston, TX

An SBIR (Small Business Innovative Research)
Phase I was awarded to Analytics to investigate the
feasibility of an innovative concept that uses an operator's
brain waves as a control mechanism for computer systems.
The Phase I reported that the present brain wave recording
technology is incapable of using these signals for direct data
transmission. But the development of such technologies as
super conductive materials at near room temperature and
biomagnetism is advancing rapidly. A direct application
from conventional MEG or EEG sensing systems could
determine an operator's state of awareness.

The principal objective of Phase II is to develop a
laboratory testbed that will provide a unique capability to
elicit, control, record, and analyze the relationship of
operator task loading, operator eye movement, and operator
brain wave data in a computer system environment. The
ramifications of an integrated eye/brain monitor to the man
and machine interface are staggering. The success of such a
system would benefit users of space and defense,
paraplegics, and the monitoring of boring screens (FAA,
nuclear plants, Air Defense, etc.)

INTRODUCTION

A variety of man-machine interface concepts have
been developed in recent years in an attempt to: (1) increase
the flow of relevant information between the system and the
operator, and (2) alleviate the need for complex programmer-
oriented input protocols. These concepts have concentrated
on the presentation, selection, or display aspects of the
interface. Another component of innovative interface design
is control mechanisms for computer systems. Development
of advanced hardware and software systems for mission
planning and control is desirable to enhance the human
operator's job performance, especially during periods of
high workload.

METHODOLOGY

The Phase I research was an investigation of the
feasibility of using brain waves as a control input to a
computer system. Currently, there are a number of devices,
such as the mouse and the touch screen, that allow for more
direct and intuitive control than do conventional keyboards.
Use of these devices requires only simple software for

93

managing hardware communication protocols, but the
approach to controlling a system via brain waves requires
more sophisticated software for the interpretation of
encephalographic data. Although, in the absence of pilot
studies, it is premature to assume that brain wave sensing is
capable of conveying complex instructions to a computer, it
seems plausible that brain waves are capable of conveying
coarse information.

In order to establish the feasibility of the concept of
using brain wave sensing for computer control several
research questions were addresses. A review of several
technologies was undertaken in order to evaluate the relative
merits of each technology to the application.

Another issue considered in the Phase I research was
the current status of hardware necessary for measuring brain
waves. The field of neuromagnetometry is advancing
rapidly, but is still in its early stages of development. It was
clear that if conclusions were based on existing
instrumentation and methods of data analysis the results of
the Phase I feasibility study would have been that the control
of systems through brain wave signals was not very
practical. Therefore, the scope of the Phase'I'rcsearch was
expanded to include an evaluation of anticipated future
developments in instrumentation.

The approach to the Phase I feasibility study
involved several research techniques. Initially, an extensive
literature search was conducted to determine the state-of-the-
art in the application of MEG technology. The literature
review revealed that MEG had advantages over the
conventional EEG, however the scope of the MEG was
limited.

Electroencephalography (EEG)

In the domain of the spontaneous EEG only a very
limited band of EEG activity could be of possible use.
Alpha activity is of large amplitude and it is strongly
associated with activity of the visual cortex in the relaxed,
wakeful but visually inattentive individual. In principle, the
modulation of alpha by changes in the level of visual
attention could be used for control of computers. However,
this would be a very primitive level of control, as the
changes in level of alpha activity are quite slow as compared

FACCEDING PACE BLANK NOT FILMZD

]

to the speed with which a person can type instructions at a
computer keyboard. To date, studies of the effects of
changes in level of attention have been based on very simple
experimental paradigms. The results of these studies do not
provide conclusive evidence regarding the variables that
affect the alpha wave form. Therefore, alpha and its
modulation should be studied further using procedures that
provide a much greater degree of experimental control over
the amount and type of mental work being done by the
subject.

Magnetoencephalography (MEG)

Magnetic recording techniques offer several
advantages for monitoring specific neural activity in the brain
with regard to computer control. However, some of the
problems associated with the EEG are also present in MEG.
Specifically, alpha activity is indeed the strongest MEG
spontaneous signal, it is not certain precisely how it is
affected by states of attention, as well as intentions, even
when these states are under very good experimental control.
Clearly the problem resides in the cognitive processes of the
human operator, and not within the recording techniques.
For example, subjects given a vigilance task in which they
simply monitor an oscilloscopic display are required to make
decisions based upon changes in the visual information. The
relative frequencies with which such decisions must be
made, the difficulty in making the "correct” decision, the
properties of the display itself (e.g., spatial frequency
content, flicker or temporal frequency, moving or static
targets), and the duration of an experimental session are all
factors that could affect MEG output.

Eye/Brain/Task Monitor Concept

A system for monitoring operator task activity can
now be built around the manual control operations necessary
to perform various task procedures. This is possible
because a computer can easily be made aware of these
events. A certain degree of task-level ambiguity is inherent
in such operations but most of these could be resolved with a
fair degree of certainty by reference to fixed task-domain
knowledge. However, a more severe criticism can be
leveled against such a system on the grounds that its results
are of too coarse a grain. Decisive action is usually taken

after a considerable period of "silent" mental activity --
analytical tasks performed by an operator are not likely to be
identifiable in the sequence of manual control operations.
Unfortunately it is just such tasks which are of critical
importance to decision aiding and intelligent problem solving
systems. Analytics believes that a system which records and
correlates human ocular and brain wave activity can bridge
the gap between isolated manual control operations.

The examination of ocular activity can clarify what is
going on during discrete control events. Eye data is
ambiguous when used to identify an ongoing task: scanning
out a straight line could as easily mean that the operator was
tracking a moving object, estimating a path, or even briefly
glancing from one point to another. Since the effect of
visual attention and vigilance on brain wave activity is
extremely robust, it is expected that components within
specific wave bands can be used to disambiguate ocular
behavior vis-a-vis operator performance of analytical tasks.
This is not to say that brain wave data will not itself prove

94

ambiguous, for it will undoubtedly do so. The entire task
identification problem is characterized by the need to resolve
potential ambiguities and conflicts in and between all the
various levels and types of available information -- eye
position, brain wave readings, manual events and fixed
domain knowledge.

In order to handle mutual disambiguation, an actual
system must be capable of passing information both
upwards and downwards between levels to achieve a "best
fit" between the low-level information and the high-level task
hypotheses. This type of processing has been applied
successfully in the domain of speech recognition (for
example, in the HEARSAY system), where low-level
phoneme and word recognition is permitted to interact with
higher-level notions of syntax and semantics. Errors and
ambiguities in word recognition can be corrected by
determining what "makes sense" in the context. This kind of
approach is generally termed "hypothesize-and-test", since
there are several independent knowledge sources and the
interpretation of each can be evaluated against the
interpretation of the other. Also termed "iterative guess-
building”, the reinterpretation ceases when some
predetermined level of confidence has been attained for the
interpretation system as a whole. For the eye/brain/task
monitor it is expected that eye data, brain wave data, manual
control data, and knowledge of the mission task domain (a
task syntax) can be fused to build a continually updated task
history which can be extended as needed for purposes of
prediction. In the context of this application, the feasibility
of using brain wave information to contribute to computer
system control appears highly plausible.

The successful application of brain wave data to
intelligent systems revolves around a thorough
understanding of the complex linkage of task structure,
operator eye-movement, brain wave response, and task
syntax. The definition of that linkage at a level sufficiently
specific to provide the basis for distributed intelligence
system algorithms requires that a testbed be developed that
focuses specifically on the issue of eye/brain/task linkage
(Figure 1).

Analytics, under contract to NASA, has pioneered
development of the application of eye-sensing technology to
computer control and has successfully integrated an
eye/voice controlled interface into a complex task/scenario
generator. This unique system, called OASIS, has been
refined and demonstrated as a working prototype. OASIS
will provide a baseline system that will be further refined
with the addition of brain sensing capability into a functional
prototype testbed that will focus directly on the issue of
eye/brain/task linkage.

TECHNICAL FEASIBILITY OF COMPUTER CONTROL

In almost every field where computer hardware is
employed, operator work stations are characterized by
growing complexity and continuously increasing data flow.
In general, two major issues are of prime concern: 1) the
increased operator workload and 2) the reduced habitability
which typically results when older control technologies are
extended to support increased functionality.

Workload problems are believed to be responsible
for operator errors in critical tasks and more generally for
reductions in operator effectiveness or productivity. A
competent workstation design attempts to reduce workload
by efficiently organizing the entire suite of operator tasks.
More recently, system developers have begun to focus on
the possibility of creating additional channels for
operator/machine communication and of redistributing
workload across the resulting range of control options. This
is of special interest when a continuous control task such as
steering must be integrated with a variety of other
operations. Offloading to new control channels os also of
interest in the context of special environmental conditions
such as high G forces where normal operator functioning
may be highly restricted. The development of commercially
available voice systems is the most obvious result of this
approach to the issue of operator workload, although other
technologies such as control by head position are already in
use. Voice interaction has been of particular interest to
developers in the aerospace industry where hands-busy and

eyes-busy operation are common and where workload
redistribution is an attractive solution.

Humans and machines are rapidly becoming
components in distributed intelligence systems where tasks
are performed cooperatively. When tasks are complex, the
passive role of "ready servant” requires that operator needs
be anticipated, much as the nurse attending a surgeon must
know what is likely to be requested before the request is
made. As the computer begins to take on a more active role,
the need for machine knowledge of operator activity and
intentions becomes essential. Now the machine may need to
query the operator regarding his actions or plans, as well as
spontaneously criticize or offer alternative solutions.
Ideally, a smart system would know when intervention was
appropriate. By analogy to the situation of human
cooperation, it is obvious that in all but the most critical
situations the appropriateness of intervention is dependent on
an understanding of what the operator is doing or is about to
do.

In order to cooperatively solve a problem, humans
depend on shared knowledge regarding the problem domain
and available courses of action. Techniques are already
available for providing machines with this type of
intelligence. However, humans also depend on observation
of their partners, frequently utilizing subtle cues to assess the
significance of more easily recognized actions. For
example, facial expressions and posture are usually taken as
indicators of a person's relative satisfaction with the results
attained by specific goal directed activity. Efficient human
cooperation requires just this kind of inference in order to
continuously adjust individual strategies as a problem
develops over time. Unfortunately, the cues used by
humans themselves are by no means completely understood
and many, such as facial expressions, would require major
research efforts before the sensing equipment itself could be
developed. In order to provide a machine with the inference
capabilities required for efficient cooperation, all available
resources will have to be focused on machine understanding
of operator behavior. This will require a dedicated, focused
laboratory facility such as the EBT testbed.

The successful application of brain wave data to
intelligent systems revolves around a thorough
understanding of the complex linkage of task structure,
operator eye-movement, brain wave response, and task
syntax. The definition of that linkage at a level sufficiently

95

specific to provide the basis for distributed intelligence
system algorithms requires that a testbed be developed that
focuses specifically on the issue of eye/brain/task linkage.

NEXT STEPS

The Phase II effort will concern itself with the
development of a prototype Eye/Brain/Task (EBT) testbed,
and through applied research and development, the
refinement and optimization of the system. The principal
objective of the proposed Phase II effort is to develop a
laboratory testbed that will provide a unique capability to
elicit, control, record, and analyze the relationship of
operator task loading, operator eye movement, and operator
brain wave data in a computer system environment.
Additionally, the testbed will have the capability to serve as
the vehicle for demonstrating computer control using brain
waves at a future time.

ACKNOWLEDGEMENTS

The research presented in this paper was sponsored
by NASA under the Small Business Innovative Research
(SBIR) program. In addition to the authors, major
contributions to this effort were made by James Deimler and
James Stokes. The authors would also like to acknowledge
the contributions of Dr. Lloyd Kaufman and Dr. Samuel J.
Williamson of New York University. At Analytics, special
thanks are extended to Ms. Phyllis H. Martin for her
technical assistance in the preparation of this paper.

N88-17220

NASA JSC NEURAL NETWORK SURVEY RESULTS

DAN GREENWOOD, NETROLOGIC, INC., 4241 Jutland Drive, San Diego, CA 92117

ABSTRACT

VERAC conducted a survey of Artificial Neural Systems in support of NASA’s (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research

Program. Several of the world’s leading researchers contributed papers containing their most recent results on Artificial Neural Systems. These papers were broken into

categories and descriptive accounts of the resuits make up a large part of this report. Also included is material on sources of information on Artificial Neural Systems such as

books, technical reports, software tools, etc. This paper is an abriged version of the report to NASA.
ACKNOWLEDGEMENT

VERAC gratefully acknowledges the contributions of all the participants of this survey and to Professor Terence Smith of the University of California at Santa Barbara and Dr.

Christopher Bowman of VERAC for their advice concerning the approach to the survey and elucidating many subtle points concerning the subject matter. Cris Kobryn played

a key role in obtaining survey data and analyzing public domain Artificial Neural Systems software. The foresight of our NASA sponsors, Robert Savely and James Villareal,

in realizing the importance and promise of this exciting new field is greatly appreciated. Sue Lani Andrassy and Susan Foster, of VERAC, kept everything under control and

imparted order where there was chaos.
1.0 INTRODUCTION

Artificial Neural Systems (ANS's) have captured the interest of many computer scientists, robotic engineers, mathematicians, and neurophysiologists as a result of pro-
gress made in solving problems which have eluded solution by conventional computer approaches. The aim of this study was to establish a database for NASA which contains
the recent results of researchers in this rapidly growing and dynamic field. Since the field is so dynamic and the time to publish current research is often protracted, it was
decided to broadcast an appeal for contributions of recent papersfreports or pre-prints to help form NASA’s database and this survey. The Yesponse was overwheiming both
from the standpoint of quantity and quality. So much so that the initial plan to perform a survey approaching the standards set by Daniel Levine [LEVINE) was soon
abandoned and it was decided to:

1) Describe the papers as they appeared te us,

2) Not evaluate the papers or try to provide an integrated point of when different authors covered related ANS subject matter.

No effort was made to ascertain the accuracy of data or the validity of mathematics from any of the papers and, many of the papers were submitted as preliminary
versions. The topics were broken down into the following areas:

1) ANS theory, 2} Computation and optimization, 3) Memory, 4) Learning, 5} Pattern recognition, 6) Speech, 7) Vision, 8) Knowledge processing, 9) Robotics/control, which

reflects the format of the International Conference on Neural Networks.

The phrase, Artificial Neural Systems, was selected for this study over: connectionist models, paralle! distributed processing, and neutral networks, although neural net-
works seems to be gaining the edge in terms of general acceptance and preference. Perhaps, it is not too late to introduce yet another word to encompass the same meaning
associated with the above terms and even a little more. The word “Netrology” seems to be one which includes neural networks and possible expansions which supersede
neural networks as they are commonly understood. It would encompass, for example, units which are not neuron-like in their behavior but which, nevertheless, exhibit
interesting or useful properties. It seems that a key component belonging to networks falling under the concept of netrology should be that a network be able to learn; thereby
circumventing the ordinarily difficult problem of programming on ensemble of parallel processors.

Based on reviewing the papers submitted in support of this study, the following issues are considered to be of importance to future progress in netrology:

1) A rigorous definition of “structure” or “regularity” which is often attributed to networks which discover features. Psychophysical measurements and fractal concepts
{such as fractal dimension) will probably be necessary to define net “structure” rigorously.

2} The construction of netrological experiments and concepts which help to define ANS situational awareness, task management, and planning.

3) A rigorous definition of similarity corresponding to the efforts made in numerical taxonomy and classical pattern recognition so that net recall of “distorted” images, tax-
onomy and classical pattern recognition so that net recall of “distorted” images, etc. really corresponds to the goals of an application. Nets may have to be more or less
discriminating per application.

4) The integration of sensory data from sensors of the same or different types (e.g., nets with three eyes and four ears) and a priori data concerning the environment and
constraints.

5) Endowing nets with desirable human-like traits wuch as artificial modesty, humor, perseverance, honesty, etc. This will be of importance in merging net-workers with
human workers in real world industrial, academic and military applications (user friendliness/congeniality is the goal here).

6) Establishing bounds of net autonomy. Asimov's robotic laws are anthropocentric. Future neural networks may look more kindly at us early designers if we make an effort
to ensure their autonomy and provide the means for gratifying their creative instincts.

7} Training humans to be tolerant and accepting of net solutions to problems. Ohm was ridiculed for 30 years, and everyone knows about Galileo, so this issue is not as
farfetched as it may seem.

8) Establishing a taxonomy of computational devices which shows which problem domains are best suited for systolic arrays, neural networks, symbolic processors, signal
processors and conventional processors.

9} Establishing neural net design rules which facilitate configuring a neural net per problem application.

10} Establishing ANS figures of merit so the vaiue of a particular learning rule or net design can be meaningfully estimated.

Considering issues 4 through 7 is certainly fun — now back to more immediate concerns. This ANS review contains an overview of the small but rapidly growing number
of commercial ANS products, public-domain research tools, and some ANS books and educational materials. [LIPPMANN] contains one of the best short introductions as well as
a penetrating analysis of ANS's as they are today, and, undoubtedly, the proceedings of the 1987 International Conference on Neural Networks will represent the state-of-
the-art for ANS’s when it is published.

2.0 GENERAL SOURCES OF INFORMATION ON ANS's

Since the recent re-birth of interest in ANS's, there has been a virtual flood of papers in engineering as well as scientific journals. So many technical papers on ANS’s

currently exist that are scattered among journals such as Biological Cybernstics, Behavioral and Brain Sciences, Psychological Review, and the Journal of the

97

o B \
i AR o

LY UL N &

o G UY PILMCD

National Academy of Sciences, that retrieving the papers aione is a time consuming and tediously difficult problem. Once a given paper is retrieved, it is then a major task
to decipher the often new definitions, notation and technical style. For an engineer whose sole interest is to understand the potential of an ANS to solve a problem in pattern
recognition or image understanding, the neurophysiological as well as the psychophysical flavor of many of the often-cited articles poses a major obstacle. The small number of
books that exist for the most part are collections of papers submitted to technical journals or conferences. ANS courses are given at a few universities and there is a video
tape of Dr. Robert Hecht-MNislsen's week-long course on ANS's. Training sessions are available both at TRW and HNC with the purchase of TRW's Mark-Ill Neurocomputer
and HNC's ANZA Neurocomputer, respectively.

In view of the widely scattered and varied information on ANS's, this section will be devoted to describing that information on ANS's which is of a general, educational
nature. The remaining sections are reserved for presenting the results of the survey based on the papers, reports and discussions generously provided by researchers throughout
the world.

2.1 ANS Books

The books listed below are available for purchase and in many university libraries. There are, as yet, no textbooks on ANS's although the books: “Self-Organization and
Associative Memory”, by T. Kohonen, and “Parallel Distributed Processing”, Volumes 1 and 2, by Rumelhart, McClelland and the POP Research Group are semblances of
textbooks.

2.1.1 Paraliel Distributed Processing (Volumes 1 and 2), (MIT Press, 1986)

These volumes are the best introductory books to the field, the members of the PDP research group at the Institute for Cognitive Science at the University of California
at San Diego, under the leadership of James McClelland and David Rumelhart, combined their talents to write (in various combinations of authors) both tutorial and
research—oriented chapters on “Parallel Distributed Processing".

The history of ANS's is traced in a fair amount of detail and a wide range of related topics are covered. Basic mechanisms such as feature discovery by competitive
learning, information processing in dynamical systems (Harmony Theory), Boltzmann machines, and back propagation are covered with many excellent examples.

2.1.2 Self-Organization and Associative Memory (T. Kohonen, Springer-Verlag, 1984)

This book was written before the days of back propagation and is mainly concerned with linear transformations. Even with these restrictions, it is 8 good source on
adaptive filters, optimal associative mappings, and self—organizing feature maps. There is a good discussion of, with examples of topology preserving mappings but in general,
many of the applications and alternative approaches in ANS's are not considered. The book complements the “Parallel Distributed Processing” book as a result of the extra
attention to mathematical rigor and its linear systems perspective.

2.1.3 Parallel Models of Associative Memory (G.D. Hinton, J.A. Anderson, Lawrence Erlbaum Associates, 1981)

This book contains a collection of papers by well-known researchers in ANS such as T. Sejnowski, S. Fahlman, G. Hinton, etc. Topics covered are: models of infor-
mation processing in the brain, a connectionist model of visual memory, holography, distributed associative memory, representing implicit knowledge, implementing semantic net-
works in hardware, and many other topics.

2.1.4 Neural Networks for Computing (G.S. Denker, Editor, American Institute of Physics, 1986}

This book contains 64 short papers by leading ANS researchers. The papers encompass applications, mathematical theory, implementations, and biological modeling. A
paper by Lapedes and Farme presented an interesting method for circumventing the limitations of a Hopfield Network. Another paper by Personnaz, et al. introduces a simple
modificationto Hebbian learning to give a more biologically plausible selectionist learning scheme.

2.1.5 Brain Theory: Proceedings of the First Trieste Meeting on Brain Theory, 1984 (G. Palm, A. Aertsen, Editors, Springer-Verlag)

“Brain Theory” contains papers by researchers primarily concerned with the workings of the brain itself and, secondarily, with methods for defining and exploiting infor-
mation processing principles obtained along the way to understanding brain operations.

2.1.6 Competition and Cooperation in Neural Nets {S. Amari, M. Arbib, Editors, Springer-Verlag, 1982)

The proceedings of a 1982 conference on neural nets are presented in this book. Leading neural net theoreticians and brain theorists such as S. Grossberg, M. Arbib,
A. Pellionisz, T. Kohonen, S. Amari presented papers at the conference.

2.1.7 The Adaptive Brain (Stephen Grossherg, Editor, North Holland, 1987}

Professor Grossberg and members of the Center for Adaptive Systems at Boston Universith (which Grossberg leads) wrote the papers for this highly theoretical book.
Chapters of the book cover: psychophysiological theory of reinforcement, drive motivation, and attention, psychophysiological and pharmacological correlates of a developmental
cognitive and motivational theory, conditioning and attention, memory consolidation, a neural theory of circadian rhythms, and other topics.

2.2 Reports
2.2.1 How the Brain Works: The Next Generation of Scientific Revolution (by David Hestenes, Third Workshop on Maximum Entropy and Bayesian Methods in
Applied Statistics, University of Wyoming, Aug 1-4, 1983)

Professor Hestenes, a mathematician from Arizona State University, was persuaded by a former student (now Dr. Robert Hecht-Nielsen of HNC, Inc.) to spend some
time and hard work getting familiar with the work of Stephen Grossberg. Hestens came away from his efforts as a firm believer in Grossberg’s approaches and outlined the
basis for his beliefs in a tutorial report dedicated exciusively to Grossberg's work.

2.2.2 Neural Network Models of Learning and Adaptation (J.S. Denker, AT&T Bell Laboratories, N.J.)

This Bell Labs technical report provides a good overview of neural network basics. Hopfield's ideas are clearly presented as are discussions of simple Hebbian learning,
ADALINE, Geometric and Pseudo—Inverse rules, and the practical effects of clipping. The report ends with an interesting presentation of open questions in neural network
theory.

2.2.3 Performance Limits of Optical, Electro-Optical, and Electronic Neurocomputers (“Optical and Hybrid Computing”, SPIE, Vol. 634, 1986}

Hecht-Nielsen did an excellent job of summarizing neural network theory and implementations up to 1986. He covered ANS modeling philosophy, technology organization,
theory, neurocomputers and their performance limits, the Cohen/Grossberg Adaptive Resonance Network Learning Theorem, Hopfield's and Kohonen's theories and their implica-
tions for implementation issues.

2.2.4 Neural Population Modeling and Psychology: A Review (D. Levine, Mathematical Biosciences, 66: 1983)

Professor Levine’s excellent review if highly recommended for anyone interested in neural networks including those with either theoretical or applications oriented interest.
This well written review addresses all of the major neural assembly models from 1938 to 1983. The works of Grossberg, Barto, Sutton, Kiopf, Anderson, Uttley, von der
Malshurg, and others are presented in a tutorial fashion and the significance of the respective models in refation to neurophysiological and psychological data is addressed in
detail.

2.25 Stochastic Interated Genetic Hillslimbing (D. Ackley, March 1987, CMU-CS-87-107, Carnegie-Mellon University)

David Ackley’s PhD dissertation contains a new method for performing function optimization in high dimensional binary vector spaces. The method can be compactly
implemented in a neural network architecture and provides an effective network training rule which combined genetic search algorithms properties with hiliclimbing algorithm
properties.

2.2.6 A Survey of Artificial Neural Systems (P. Simpson, Unisys, San Diego)

Patrick Simpson of Unisys reported the results of a survey of ANS’s in [SIMPSON, abs). This survey, completed in early 1987, discussas some of the well known neural
models and contains computer codes for different learning rules (Hebbian, Hopfield, Boitzmann} and recall rules. Many of the ANS's such as the Sejnowski/Rosenberg NETtalk,
are described. A brief history of ANS's is also included.

2.2.7 Efficient Algorithms with Neural Network Behavior (S. Omohundro, April 1987) Report No. UIUCDCS-R-87-133, Department of Computer Science,
University of lllinois at Urbana-Champaign) .

Although this report is not concerned with ANS's per se, it does discuss alternatives to ANS approaches and, in so doing, sheds light on the capabilities and properties
of ANS's. Using hierarchical data structures well known in computer science (arrays, hashing, tries, trees, adaptive grids) Omohundro was able to show very significant
implementation advantages in solving problems where ANS's are now being applied. In explaining why his data structure based approach is in many cases much more efficient
than corresponding ANS approaches, Omohundro claims:

98

1) ANS's must evaluate each neuron’s activity and consider the effect of each weight each time an input is made, while the “algorithm approach” only looks at stored
values along a path of logarithm depth.

2) ANS learning requires that all weights be updated with each input, but data structures only modify parameters where regions are relevant in determining the output on
the given input.

2.3 Other Sources of General ANS Information

The following media provide additional sources of ANS information:

2.3.1 Neuron Digest

Subscribers to ARPANET can avail themselves of neural network information on upcoming lectures, publications, conferences, abstracts, government research grants, opin-
ions and needs. The Neuron Digest is distributed each month and is a great way to keep informed about this rapidly growing field.

2.3.2 A Video Tape on Artificial Neural System Design

A video tape of Dr. Robert Hecht-Nielsen's 5-day course on ANS design is available through HNC, Inc. or the University of California at San Diego through the Univer-
sity Extension. The course is an excellent way to get introduced to the state-of-the-art of ANS's by one of the field’s leading experts and educators. The full spectrum of
ANS's from deep theoretical issues (Grossberg, et al.) to practical ANS implementations are covered.

2.3.3 HNC, Inc. Month-Long Course on ANS's

A hands—on course in ANS is included in the purchase price of an HNC Neurocomputer (the ANZA). The course emphasizes the practical aspects of applying ANS
methods to problems in sensor processing, knowledge processing, control, optimization, data base management and statistical analysis. The course is aimed at enabling students
to become productive ANS experts in a short period of time.

2.3.4 TRW Mark-1ll Neurocomputer Training

TRW’'s ANS Center, headed by Michael Myers, provides a one-week training with the purchase of a TRW Mark-lll Neurocomputer. The very powerful machine with a
staff experienced at solving problems {much beyond the text-book variety of most applications of ANS's) provides an effective way for ANS's users to augment their skills.

3.0 IMPLEMENTATIONS OF ARTIFICIAL NEURAL SYSTEMS

The resurgence of interest in ANS's and critical evaluations of their potential have resulted in new commercial enterprises whose charters are to bring ANS products to
market. There also exist activities in many businesses aimed at developing hardware and software available commercially and under development by members of the commercial
sector.

3.1 Currently Available Commercial ANS Products

The following companies sell ANS products and may be contacted directly to obtain literature containing ANS product descriptions.

3.1.1 HNC (Hecht-Nislsen Neurocomputer Corporation)

HNC is a San Diego based company founded by Robert Hecht-Nielsen and Todd Guschow who developed the Mark series Neurocomputers while at TRW. HNC's main
products are the ANZA Neurocomputer and the ANZA basic “Netware” (neurocomputer software) package. A month-long course is offered and course participants are expected
to have a basic knowledge of college level mathematics, and problems of interest to them will be addressed in the course.

The Netware packages are loaded into the neurocomputer {in combinations of one or more), and their constants and parameters tuned and selected by the user to fit the
application problem at hand.

3.1.2 Nestor, Incorporated

Nestor is a publicly traded ANS company which currently sells two products developed by nobel laureat, Leon Cooper, and Brown University physics professor, Charles
Elbaum. The company is located in Providence, Rhode Island. ANS methods used in current Nestor products are also being considered for postal sorting, robotic mission
systems, fingerprint and voice identification, speech and speaker identification, medical diagnostic systems, check processing and encoding and credit card
identification/validation.

3.1.3 Neuraltech, incorporated

Dr. John Voevodsky founded Neurotech, Incorporated and sells a software product called “PLATO/ARISTOTLE". The software package is a neural-based expert system
for the 1BM PC-AT and COMPAQ 286/386 personal computers.

3.1.4 Texas Instruments

Andrew Perry and Richard Wiggins of Texas Instruments developed a digital signal processor for accelerating neural network simulations [DENKER]. Using Ti's Odyssey
boards, they developed a system which was forty times faster than the VAX 8600 for ANS applications.

3.1.5 TRW

TRW sells a neurocomputer called the Mark-IIl and provides a one-week on—site (San Diego, CA) course in the purchase price. TRW researchers Michael Myers and
Bob Kuczewski are defining the state-of-the-art in applications of ANS methods to signal processing, spatial temporal pattern learning, classification of time varying
spectrograms, and image analysis.

3.1.6 SAIC's -1 Neurocomputer

SAIC announced a Neurocomputer, called the “X-1", which is expected to be available in October of 1987. The machine was developed by a SAID research team head-
ed by Dr. James Solinsky, a renown computer vision researcher. the X~1 software includes shells for most well known learning rules.

3.2 Currently Available Public Domain ANS Products

At the present time software ANS simulation packages can be obtained without charge from Brown University and the University of Rochester for use by ANS
researchers.

3.2.1 The Brown University ANS Simulation

Professor James A. Anderson of Brown University released an ANS simulator based on his “Brain State in a Box" neural network model. The software was developed
over the last 12 years and continues to be a useful tool for ANS experimentation.

3.22 The University of Rochester Simulation

The University of Rochester reported on two ANS software packages. One is intended to be executed in @ BBN Butterfly Multi-Processor [FANTY] and another can be
axecuted on either a VAX minicomputer (with UNIX} or the Sun Microcomputer.

3.3 ANS's and Components Being Doeveloped but Not Currently Availsble

Several high technology companies and laboratories are sponsoring internal research and development programs aimed at producing commercial ANS's or ANS components.
The following subsections given an overview of such activities for some of the companies initiating product oriented research programs.

3.3.1 AT&T Bell Laboratories

Bell labs has a neural network working group with H. Graf, L. Jackel, J. Denker, et al. as members. This group has successfully implemented 54 neurons and 54 input
channels with 3000 synapses (interconnects) connecting the input channel with each neuron. Standard CMOS was used in the implementation. Design work for a 2566 neuron-
chip and 512 neoron—chip has been completed. In addition, an associative memory with an analog processor and digital 1/0 was reported. Details of the chip designs are given
in [GRAF, JACKEL, et al.}.

Joshua Alspector and Robert Allen of Bell Communications Research described a VLS| implementation of a modified Boltzmann Machine in [ALSPECTOR]. Their paper
contains a short review of Pitts formed neuron, ADALINE, Hopfield's model, the Boltzmann Machine and back-propagation.

332 IBM

Under Dr. Claude Cruz's leadership, IBM's Palo Alto Research facility has developed a “Network Emulation Processor (NEP) with an IBM PC/XT host computer and pro-
fessional graphics adapter yields a workstation to interactively design, debug, and analyze networks.

3.3.3 California Institute of Technology and the University of Pennsylvania

P. Musller of the University of Pennsylvania and J. Lazzaro of the California Institute of Technology have assembled an ANS of 400 analog neurons for analyzing and
recognizing acoustical patterns (including speech) [MUELLER]. Up to 100,000 interconnects can be made and synaptic gains and time constants are determined by plugging in

99

resistors and capacitors. The system currently performs adequately for well articulated phonemes and diphones. New energy consonants present problems but it is expected
that different coding schemes and better understanding of the invariant clues for speech perception will lead to improvements.

3.34 Hughes Research Laboratories (Malibu, CA)

Researchers G. Dunning, E. Maron, Y. Owenchko, and B. Soffer at Hughes Research Laboratories have developed and tested an all optical nonfinear associative
memory using a hologram in an optical cavity formed by phase conjugate mirrors {SOFFER]. They were able to store multiple superimposed images and reconstruct a complete
image, inputting only a portion of the stored image.

3.3.5 UCSD Analog Back Propagation System

Stan Tomlinson, a graduate student at UCSD, discovered a method for increasing the speed of a back propagation ANS. Tomlinson defined a “continuous time back
propagation ANS” where the forward pass, backward pass, and weight modifications are performed simuitaneously.

3.3.6 Oregon Graduate Research Center

Dan Hammerstrom and his colleagues at the Oregon Graduate Research Center are in the process of designing a water—scale integrated silicon system that implements
a variety of ANS's [HAMMERSTROM]. In their investigations of implementations of the back propagation learning rule, their simulations show that nodes can compute
asychronously and that the rule is robust enough to accommodate incomplete information on each learning cycle.

3.4 ANS Properties

K.L. Babcock and R.M. Westervelt of Harvard University investigated the stability and dynamics of electronic neural networks with added inertia and reported their
results in [BABCOCK]. Babcock and Westervelt reviewed the Hopfield ANS model and then expanded it by adding an inertial term to the rate equations.

A. Guez, V. Protopopescu, and J. Barnden of the Oak Ridge National Laboratory Studies the stability, storage capacity and design of nonlinear results in [GUEZ). They
determined sufficient conditions for the existence and asymptotic stability of any ANS's equilibrium. The conditions take the form of a set of piecewise linear inequality
constraints solveable by a feedforward binary network or other methods such as Fourier Efimination.

4.0 ANS MODELS AND APPLICATIONS

Despite essentially continuous research and development since the introduction of computers in the late 1940-s, the connection between brain processing and computer
processing is still undergoing theoretical development. No attempt is made at forming a complete integrated view of the large amount of material of the different ANS topics
covered in the papers and reports from the survey participants. Time restrictions of the study prevent undertaking the very important tasks of interpreting, evaluating, and in-
tegrating the many excellent and undoubtedly important contributions by ANS researchers. These crucial tasks remain to be done in the future.

It is difficult to make a clear distinction between brain theory and ANS {neural network or connectionist) theory since ANS researchers typically proceed by abstracting
the essence of a theory aimed at explaining results obtained from neurophysiological or psycho—physical experiments and then derive a method for designing processors (elec-
tronic or optical) which can obtain the same or nearly the same experimental results. [FRISBY} contains an excellent and well illustrated discussion of Poggio’s and Marr’s ap-
proaches at modeling steroptics, and his book serves to indicate the basic practice of going from pure brain theoretic modeling to computer based ANS models. It is generally
accepted that no completely satisfactory brain theory exists aithough some models, such as von der Malsburg’s model of the visual cortex, exhibit behavior that experiments
confirm. In spite of sometimes incomplete theories, ANS researchers often attempt to develop real world applications of any plausible theories in areas such as vision, speech
recognition, etc. Many of the current ANS theories basing their roots in brain research are rich enough in information theoretic content to have, so to speak, lives of their own.
The current successful ANS model seems to be one reflecting human-like information processing capabilities, implementable in some computational device which provides
reasonable results in close to real~time. The present ional Al imp reached by attempts at computer vision and artificial intelligence so ably described in {LERNER]
and [DREYFUS] leaves no other alternative than the ANS based approaches presented in the papers described below. {von der Malsburg] Contains many modern brain models.
4.1 Brain Theory Applicable to ANS's

The question of how much brain theory is enough to enable the design of processors which can produce acceptable human {or animal)-like processing is very difficult to
answer. It is also very difficult to ascertain the level of detail required of a model: is it sufficient to characterize the average behavior of assemblies of neurons as in much of
Grossberg’s work or are individual cells behavior required? How to choose between and extract the “essential” properties of Grossberg's, Freeman's, Edelmans’s and Reeke's
models, for example is not at all clear. Recent ANS/computer theory history compels modern computer scientists and robatic engineers to achieve at least some familiarity with
the different brain theories represented in this subsection.

4.1.1 Nonlinear Dynamics with Chaotic Solutions {Laboratory Measurements and Models)

Walter Freeman, Christine Skarda, and Bill Baird developed models of the formulation and recognition of patterns in the rabbits olfactory bulb. Baird gave an
excellent overview of neural modeling which relates the welt known ANS models to resufts from laboratory measurements [BAIRD). Baird simplified Freeman's ANS model of the
rabbit's olfactory bulb while capturing the essence of the pattern formationjrecognition behavior. A key definition for Baird's work is “pattern formation”: the emergence of
macroscopic order from microscopic disorder. Freeman, Skarda, and Baird define dynamical systems which have chaotic behavior (fractal solutions) for ground states as opposed
to fixed point attractors, as in Simulated annealing or the Hopfield model. It is speculated that such ground state behavior is essential for real-time continuous perception.

Freeman argues, very congently, that neural dynamic system destabilization provides the best description of the essentials of neural functioning, and Baird finds that the
mechanism of competing instabilities (nonlinear mode selection) is implicit in dynamical associative memories and provides the key ingredient in pattern recognition. While admit-
ting that their neural dynamical models have many similarities with well known connectionist models, they point out significant dissimilarities essential for recognition and
discrimination. Freeman and Baird’s models are unique in that they possess dense local feedback between neuron assemblies. Such feedback is necessary to generate chaotic
and limit cycle system ground states.

Gail Carpenter and Stephen Grossherg developed a neural network model for mammalian circadian rhythms [CARPENTER] which can have chaotic solutions for some
system parameter ranges. Their model explains many phenomena in mammal behavior such as the role of eye closure during sleep and the stability of the circadian period.

4.1.2 Brain Models of Knowledge, Conditioning, Perception, and Learning Processing

Stephen Grossberg and Ennio Mingolla in their paper (GROSSBERG, MINGOLLA] show how computer simulations can be used to guide the development of neural
models of visual perception. They use cooperation/competition mathematical models to simulate textual segmentation and perceptual grouping as well as boundary completion.

Daniel Levine, 'the brain theorist who authored the very extensive and well written neural modeling review [LEVINE] also recently contributed two papers to brain
theory. In “A Neural Network Model of Temporal Order Effects in Classical Conditioning”, Levine demonstrated in a computer simulation that one of Grossberg's neural net-
works can reproduce the experimental findings that the strength of a conditioned response is an inverted U-function of the time interval between conditional and unconditioned
stimuli. The network also can reproduce blocking of a neutral stimulus by another stimulus that has been previously conditioned. Levine also traces the history of conditioning
models in this paper and reviews Grossberg's theories {LEVINE, 1986].

A very novel model of cortical organization was invented and investigated by Gordon Shaw and colleagues [SHAW] at the University of California at Irvine. Their model
was motivated by V.B. Mountcastle’s organizational principle for neocortical function and M.E. Fisher's model of spinglass systems. Their network is composed of intercon-
nected “trions”’, units which have three possible states (-1, 0, + 1) which represent firing below background, at background, and above background respectively. Trions repre-
sent a localized group of neurons and symmetrical interaction between trions exhibit behavior where hundreds of thousands of quasi-stable periodic firing patterns exist and any
can be selected out and enhanced, with only small changes in interaction strengths, by using a Hebbian—type of algorithm.

Dana Ballard presented his local representation ideas for modeling the cerebral cortex in a stimulating paper in the Behavioral and Brain Sciences {BALLARD]. A large
part of the interest associated with the paper resulted from the peer commentary following the paper (members in the Veer group included Grossberg, Hoptield, Edelman). In the
paper Ballard presented his local representation model and value unit concept. He included methods for perceiving shape and motion by exploiting his model.

John Hopfield, whose famous ANS for solving the traveling salesman problem, generated a great amount of interest and enthusiasm far, once again, applying ANS's to
real world problems, also performed theoretical and experimental work on the nervous system of the Limax maximum (A terrestrial mollusk). In [HOPFIELD] a description is given
of behavioral and neurophysiological attributes of Limax learning. A mode! which also includes a memory network is related to experimental data and predictions are made.

George Hoffmann presented some very novel ANS concepts in a paper which explored analysis between the brain and the immune system [HOFFMANN]. His model
involved a neuron with hysteresis which eliminated the need for learning with modifiable synapses. The Hoffmann ANS learns through interacting with the environment and
being driven to regions in phase-space. The system has 2N attractors for N neurons.

In their paper “Selective Neural Networks and Their Implications for Recognition Automation” [REEKE], George Reeke and Gerald Edelman observed that the models of

100

McCulloch and Pitts, Marr, Hopfield, Hinton and Anderson, and McClelland and Rumelhart all deal with the mechanisms for acquiring and processing information, but not with
the ways that the categories of information and the mechanisms to process them come to exist. As a consequence, Reeke and Edelman devised a model which exploits basic
biclogical principles (Darwin’s principles of natural selection) to explain the discovery of perceptual categories, the representation of categories without pre-arranged codes, the
manipulation of retrieval keys, and the selection of actions on the basis of imperfect and inconsistent information without a program.

A. Pellinisz and R. Linas wrote many papers on the last ten years where '‘Tensor Network Theory” is introduced [PELLIONISZ]. Pellionisz asserts that the conven-
tional representations of McCulloch, Pitts, Kohonen, Hinton and Anderson are expressed in extrinsic, orthogonal systems of coordinates and represented coordinates in Euclidean
vector space. He finds that new important insights into the control nervous system are gained by describing the central nervous system in terms of intrinsic coordinates using
tensor analysis.

Michael Jordan continued the tradition of excellence in ANS research associated with the UCSD iInstitute for Cognitive Sciences with the publication of his paper ‘Serial
Order: A parallel Distributed Processing Approach” [JORDAN]. ANS trajectories (attractors) follow desired paths as a result of learning with constraints which generate the
required serial order. His report contains an ANS tutorial section, an approach to the coarticulationtion problem in speech, and examples from various simulations.

David Zipser, also from UCSD’s Institute for Cognitive Science, authored two reports dealing with problems of the representation of spatial entities (ZIPSER]. He des-
cribed a map retrieval mechanism based on an ANS and illustrated mapping tasks such as recognition of previously visited locations, path finding using landmarks, and finding a
path between two focations that do not share landmarks. He also points out similarities between ANS features associated with map representation, and known features of the
hippocampus.

James McClellang and David Rumelhart presented a very thorough exposition of the distributed models of memory and learning and compared their model to other
well known models from cognitive science (MCCLELLAND]. They point out that their distributed model is capable of storing many different patterns, determining the central
tendency of a number of different patterns, create perceptual categories without using labels, and capturing the structure inherent in a set of patterns with or without
prototype characterization.

Jerome Feldman of the University of Rochester performed a theoretical analysis of the behavior of connectionist mode, in [FELDMAN]. He analyzed ANS's using energy
concepts such as the Hopfield, Hinton, and Sejnowski, and Smolensky models and pointed out that such approaches are most relevant for problem domains lacking significant
structure and questioned the utility of such approaches in highly structured cognitive domains (such as compiling or parsing). He also discussed the relevance of automation
theory and controf theory to ANS formalization.

In a paper entitled “On Applying Associative Networks”, submitted to the IEEE First Annual Conference on Neural Networks, A.D. Fisher treated approaches to for-
mulating basic organizational principles for mapping problems onto associative processors. He addressed goal directed learning and structures for knowledge representation, and
configuring a simulation environment for evaluating and developing the organizational principles.

4.2 Computation/Optimizatin

The computational generality of ANS's and the ability of ANS's to solve some interesting optimization problems are now widely known [DENKER]. In the last few years
some interesting papers appeared which view ANS's from complexity theory, computational, and mathematical perspectives and which strive to characterize ANS's in more
classical systms theoretic manner. This subsection describes these types of papers from various contributors to the survey.

lan Parberry and Gearo Schnitger, of the University of Pennsylvania, investigated the relationship between boltzmann Machines and conventional computers
(PARBERRY]. They concentrated on determining the computing power of Boltzmann machines which are resource bounded. They measured machine running time and hardware
requirements as functions of problem size. They found that:

1) The connection graph can be made to the acyclic (no feedback loops)

2) Random behavior can be removed from the machine

3) All synapse weights can be made equal to one.

These properties make the machines equivalent to a combinatorial circuit and the resulting machine will have its running time increased by a constant multiple and its hardware
requirement increased by a polynomial.

Terence Smith, Omar Egecioglu, and John Moody analyzed computational complexity issues in ANS’s such as the generalize feed—forward networks, perceptrons, and
Hopfield devices [EGECIOGLU). For each ANS type they describe programming the ANS, functions computable by the ANS, complexity issues, and the architecture. They point
out the need for the expansion of traditional computer science to include dynamical systems and statistical mechanics.

Pierre Baldi of UCSD (formerly of the California Institute of Technology) established an upper bound for generalized Hopfield type models. That is, models with energy
functions or Hamiltonians of degree d:

N
H(X) = ETI],,IdXII,XId,
i1 g
Based on counting arguments they established a storage capacity upper bound of OIN%1) for ANS's with dynamics which minimize H{x). Baldi points out that these higher
order systems have local updating rules as in the quadratic (Hopfield) case and they recur very naturally in optimizing problems [BALDI}.

John Hopfield, of the California Institute of Technology, and David Tank, of AT&T Bell Laboratories, introduced a new conceptual framework and a minimization princi-
ple which provide increased understanding of computation in neural circuits |HOPFIELD]. They derive a model abstracted from knowledge of biological neurons and discuss how
their model dispenses with many known properties of neurons while still capturing those aspects necessary for performing computations essential to organism adaptations and
survival. The classical model of the neural dynamics is taken as a point of departure and Hopfield and Tank show that the assumption of interconnect (weight} symmetry is not
overly restrictive and that many functions such as edge detection, stereoptics, and motion detection can be cast as optimization problems and solutions result from the con-
vergence of symmetric dynamic neural systems.

Morris Hirsch, a mathematician from the University of California, investigated convergence in neural nets [HIRSCH). He discussed the Liapunov functions discovered by
Cohen and Grossberg and the connection to Hopfield's results. He was able to remove some restrictions on the state equations {neuronic equations) that show that important
convergence properties still hold.

Harold Szu, of the Naval Research Laboratory, presented a method for speeding up the conventional simulating annealing algorithm [SZU). Szu's non-convex optimization
method, called a Cauchy machine, is derived from the Boltzmann machine by using the Cauchy/Lorentzian probability density function in place of the Gaussian probability density
function. It is shown that the “cooling” schedule varies inversely with the time versus the inverse logarithm of time for conventional simulated annealing.

43 Memory in ANS's

A large body of ANS research is devoted solely to the modeling of human or biological memory (see [LEVINE] for a review). This section presents descriptions of recent
work on ANS memory and is broken into theory, applications, and implementation categories.

4.3.1 ANS Memory Theory

Despite the extensive amount of research, there is still no complete and universally accepted theory of human or biological memory. However, as in other categories of
ANS modeling, many useful models of memory have been identified in the pursuit of devising an accurate theory of biological memory. The work on the theory of memory
immediately below is representative of modern theoretical advances in ANS memory theory.

David Rumelhart and Donald Norman of the UCSD Institute for Cognitive Science are important contributors to the development of parallel distributed ANS's and they
also did important work in Artificial Intelligence. They published an ICS report on memory, “Representation in Memory,” which gives an excellent overview on Al approaches in
the theory of human memory. Though ANS's are not addressed in this report, it is, nevertheless, recommended for gaining insights into the issues concerning the representation
of knowledge. They discuss spreading activation in semantic networks and discuss the ideas of Fahiman and Anderson.

Stephen Grossherg and Gregory Stone devised models of the effects of attention switching and temporal-order information in short term memory. In their paper,
“Neural Dynamics of Attention Switching and Temporal-Order Information in Short-Term Memory” [GROSSBERG, STONE, they argue that attention-switching influences initial

101

storage of items in short term memory, but competitive interactions among representations in short term memory control the subsequent dynamics of temporal-order information
as new items are processed.

Teuvo Kohonen summarized his current views on the theory of memory in a paper titled, “’Self Organization, Memorization, and Associative Recall of Sensory informa-
tion by Brain-like Adaptive Networks” [KOHONEN]. Kohonen asserts that the two main functions of memory are: 1) to act as mechanisms which collect sensory information
and transform it into various internal models or representations, and 2) to interrelate the signal processes in these representations and store them as collective state changes of
the neural network.

in 1984, Pentti Kanerva published his PHD thesis entitled "Self-Propagating Search: A Unified Theory of Memory” [KANERVAL. His dissertation introduces the sparsely
distributed memory model and the concept of using a neuron as an address decoder for accessing memory. Kanerva's memory model overcomes limitations in the Hopfield
memory model such as dependence of storage capacity or the number of neurons {.14N, N = # of neurons), the inability to store temporal sequences, symmetric intercon-
nects, and a new limited ability to store correlated inputs.

The dissertation includes background material on related ideas by Marr and Kohonen and inciudes mathematical estimates of convergence rates and memory capacity.
Kanerva further elaborated upon his memory model in a paper, “Parallel Structures in Human and Computer Memory,” and discussed the application of his ideas to the “frame”
problem of Artificial intelligence and showed that the part of the problem concerned with manipulating vast quantities of data about the real world can be handled with his
spare distributed memory concepts.

James Keeler of UCSD compared Kanerva's model with Hopfield's model in a Research Institute for Cognitive Science Paper: “‘Comparison between Sparsely Distributed
Memory and Hopfield-Type Neural Network Models”, [KEELER]. In this very well written and mathematically rigorous paper, Keller developed a matheratical framework for
comparing the two patterns. Keeler extended Kanerva's sparse distributed memory model and showed that Hopfield's model was a special case of this extension. Keeler showed
that Kanerva's model corresponds to a three layer network with the middle layer consisting of many more neurons and that Kanerva's formulation allows context to aid in the
retirevel of stored information.

Alan Lapedes and Robert Farber, of the Theoretical Division of Los Alamos National Laboratory, reported on a new method for designing a content addressable memory
which is free of major limitations associated with the Hopfield content addressable memory [LAPEDES). Their method consists of dividing a network into two groups of neurons.
One group, called the Master net function, basically has a Hopfield optimization network while the other group, called the Slave net can have asymmetric connections. Advan-
tages associated with this master/slave formulation are: 1) two bases of attraction may be merged together, 2) weighting of certain components of a fixed point so that it
attracts more strongly (sculping a basis of attraction}, and 3) biologically plausible division of neurons into excitatory and inhibitory sub-groups.

Tarig Samad and Paul Harper of Honeywell used back-propagation in finear array of fully connected units to construct a content addressable memory (SAMAD). They
cite several advantages in their method over the Hopfield content addressable memory: 1) asymmetric weights, 2) their method is guaranteed to recognize stored patterns, 3)
close to perfect recall if a retrieval cue is not very far from any stored memory, 4) up to 2" patterns can be stored (N = number of neurons and bits in the patterns), 5)
20% perturbations in learned weights and thresholds effected performance by less than 1%, and 6) robustness in degradation of weights, learning rates, and stored pattern cue
hamming distance.

Demetri Psaltis and Cheol Hoon Park of the California Institute of Technology, designed an associative memory with a quadratic disriminant function [PSALTIS). Their
neural net memory can be shown to have a capacity proportional to N where N is the number of bits in a storage sector. The square law nonlinearity is conducive to an op-
tical implementation. The added capacity can be combined with the shift invariant property of an optical correlator to yield a shift invariant associative memory.

Santosh Venkatosh and Demetri Psaltis of the California Institute of Technollgy, discovered an associative memory which uses the spectrum of a finear operator
[VENKATOSH). They showed that their method has a capacity which is linear in the dimension of the state space while that of the outer—product method has a capacity
asymtote of n/{4 log n). Their method requires full connectivity and, consequently, is more suitable for an optical implementation. The larger storage capacity of the “spectral”
method is paid for with increased pre—processing cost.

4.3.2 Applications of ANS Memory

An interesting application of an ANS memory was devised by Michael Mozer of the Institute of Cognitive Science as UCSD [MOZER]. Mozer's ANS performed inductive
information retrieval. The ANS retrieval system takes dynamic use of the internal structure of test databases to infer relationships among items in the database.

The inferred relationship helped the system overcome incompleteness and imprecision in request for information as well as in the database. The ANS used neuronic equa-
tions from McClelland and Rumelhart’s interactive activation model of word perception. The model handles queries in a document retrieval application by activating a set of
descriptor units and seeing which document units become active as a result.

4.3.3 Implementations

Shift invariant Optical Associative Memory implementations were analyzed by D. Psaltis, J. Hong, and S. Venkatesh in [PSALTIS]. They found that without special
encoding techniques associative memories with linear interconnections did not retrieve shifted images well. Two systems, one with a square law interconnection and the other
with a novel encoding scheme, were found to be shift invariant and to achieve the performance of the outer product method.

Arthur Fisher, Robert Fukuda, and John Lee discussed the implementation of parallel processing architectures consisting of multiple optical adaptive associative
modules [FISHER]. The modules adaptively learn and store a series of associations in the form of electronic charge distributions in an optical control device termed a micro-
channel spatial light modulator. The optical adaptive associative modules have a gated learning capability, where adaptivity is easily switched on or off. The associative modules
have an accumulative learning capability where even one exposure to an associated pair of vectors produces a weak association and subsequent exposures improves to the
optimum pseudo—-inverse solution.

4.4 Learning

It is well known that progress in Artificial Neural Systems came to an abrupt halt shortly after the publication of the Minsky and Papert treatise; “Perceptrons.” The
ability to program a multilayered network proved to be a very stubborn problem until the work of Kohenen, Rumelhart, Parker, Hopfield, Barto, and Sutton showed how such
nets could be programmed. This section describes the recent results in ANS learning.

In this monumental PhD dissertation, David Ackley describes a muiti-dimensional space search strategy which combines hill climbing methods and search methods based
on genetic algorithms [ACKLEY]. Ackley's method called “’Stochastic Iterated Genetic Hillclimbing”, has a coarse-to-fine search strategy as in the case for simulated annealing
and genetic algorithms but the convergence process is reversible. That is, in the implementation it is possible to diverge the search after it has converged and recover coarse-
grained information about the space that was suppressed during convergence. Successful optimization typically has a series of converge/diverge cycles.

Renald Williams, formerly of the Institute for Cognitive Science at UCSD and currently with Northeastern University, investigated a class of algorithms designed to
allow the self-organization of feature mappings in ANS's [WILLIAMS). Williams introduces a measure termed “faithfulness” which is intended to measure how well an input
pattern can be constructed from knowledge of an output pattern. The algorithm he devised for feature detection maximizes the faithfulness measure. Williams defines an
algorithm called *“Symmetric—error correction” and he proves that if a system is completely linear and symmetric of rank R greater than m, the number of output units, then
when the algorithm converges the resulting weight vectors are of unit length, orthogonal, and span the space spanned by n eigenvectors having the largest eigenvalues.

Andrew Barto of the University of Massachusetts, discusses an ANS based on the concepts introduced by Harry Klopf [BARTO]. Barto’s ANS is called Ag_p
(associative reward—penalty) and has a learning rule which adjusts weights according to four types of information: 1) presynaptic signals, 2) postsynaptic signals, 3) a reinforce-
ment signal from the environment that reflects the consequences of a neuron’s activity, and 4) a signal that indicates what a neuron usually does for a given stimulas pattern.

Barto shows how the Ag_p ANS solves the “exclusive or” problem as well as other non-trivial problems. He also includes a very informative comparison of “associative
reinforcement learning” (to which Ag_p corresponds), supervised and unsupervised learning and points out subtle distinctions between these basic learning types. He argues, for
example, that unsupervised learning is more accurately regarded as supervised learning with a fixed built in teacher. Theoretical convergence and comparative analyses of Ag_p
are also included in the report.

Gail Carpenter and Stephen Grossberg collaborated on paper on associative learning, adaptive pattern recognition, and cooperative-competitive decision making by
neural networks [CARPENTER]. The paper contains a discussion of the “univeral theorem” (proved elsewhere) which show how arbitrarily many cells computing arbitrary
transfer functions can interact asynchronously through complex nonlinear feedback and experience no learning bias resulting from cross-talk of their feedback signals — a result
called “'absolute stability”. There are also discussions of feature discovery, category learning, adaptive pattern recognition, and Adaptive Resonance Theory (ART). ART is an
ANS which self-organizes its recognition code and the environment can also modulate the learning process and, as a result, carry out a teaching role.

102

Harry Klopf discussed drive reinforcement learning in a paper for the IEEE First Annual International Conference in Neural Networks (June 1987) [KLOPF]. Klopf's iearn-
ing mode! uses signal levels and changes in signal levels in such a way to yield an unsupervised learning which predicts classical conditioning phenomena such as delay and
track conditioning, stimulus duration and amplitude effects, second-order conditioning, extinction as well as other phenomena. In his model, sequentiality replaces simultaneity
and is an extension of the Sutton-Barto model (1981).

D.G. Bounds, of the Royal Signals and Radar Establishment, performed an analysis of Boltzmann Machines and reported the results in [BOUNDS]. Bound’s paper contains
a discussion of the Boltzmann machine algorithm and the encoder problem for the task of communicating information between components of a parallel network. An extensive
simulation was conducted which assessed the effect of temperature on learning rate, and a comparison between the Boltzmann Machine Hamiltonian and the Sherrington-
Kirkpatrick Spin—glass Hamiltonian.

W.S. Stornetta and B.A. Huberman of the Xerox Palo Alto Research Center presented an analysis of the back-propagation algorithm in [STORNETTA, ICCN,87]. They
capitalized on the fact that if an input is zero there will be no modification to the weights extending out from that unit and, consequently, only half of the weights from the
input to the hidden unit layer will be changed. The back-propagation algorithm was modified so that the dynamic range of all units was (-1/2, 1/2) rather than (0,1). The input
and output patterns consists of series of —1/2's and 1/2's and the squashing function is given by:

-1/2 (expi- Wijoj + bias;)) + 1]'1

and the rest of the conventional back-propagation algorithm remains unchanged.

Bart Kosko, of VERAC Corporation, devised a new learning method associated with Bidirectional Associated Memory (BAM} and described its ANS properties in [KOSKO].
This very well written and informative paper contains a review of classical associative memory theory and a tutorial section on BAM. An earlier proof by Kosko that energy
matrix is bivalently bidirectionally stable is reviewed and BAM correlation encoding is discussed.

Continuous BAM's, introduced in Kosko's earlier work, are reviewed and a proof that every matrix is continuously bidirectionally stable is given. BAM learning, the main
interest of the paper, is achieved by programming the BAM connection matrix to adapt according to a generalized Hebbian learning law where adaptive resonance occurs, that
is, neurons and interconnections quickly reach equilibrium. The connection weight learning law is called the Signal Hebb faw and is given by:

Ai’ B = activation
S(} = sigmeid function

Adaptive BAM's are characterized as to their classification properties and it is shown that they converge to local energy minima. in addition, the capabilities of the
adaptive BAM are compared and contrasted to Grossberg’s Adaptive Resonance Theory (ART) ANS.

Kosko extended adaptive BAM's to competitive adaptive BAM's by including lateral-inhibitory interactions {(KOSKO]. When field inhibitory connections are taken to be
symmetric, stability can be shown, although it was found that in practice, non-symmetric within field connections exhibit stability in many cases.

Variations on the Grossberg adaptive resonance model were explored by R.W. Ryan and C.L. Winter, of Science Applications International Corporation and reported in
the Proceedings of the ICNN (1987). Ryan and Winter found that the adaptive resonance model may activate a coded recognition node whose top-down pattern bears little
resemblance to the corresponding input pattern and there is no guarantee that the adaptive resonance circuit (ARC) will reset and, hence, the ARC will be recoded by the input
pattern unless the set of weights is prevented from changing.

4.5 Pattern Recognition

Bill Baird of the Department of Biophysics at the University of California, reported the results of an analyses of pattern recognition in the olfactory bulb of the rabhit
[BAIRD]. Baird simplified Freeman’'s model by neglecting synaptic delay and did not perform a full simulation of the rabbits olfactory system but achieved universality as a
result. His mathematical analysis explains how an oscillating system can pattern recognize. Baird conducted experiments with an array of 64 electrodes which yielded EEG pat-
terns which showed the emergence of order from disorder and indicated that specific EEG patterns are correlated with specific recognition responses. A theory which combines
the mathematical description of the emergence of order by instability with the mathematics of associative memory is required to model learning and memory in neural networks.

Robert Hecht-Nielsen, of HNC, showed how banks of matched filters can be used as pattern classifiers for complex spatiotemporal pattern environments such as
speech, sonar, radar, and communication [HECHT-NIELSEN]. He defiend an ANS, called a “simple avalanche matched filter bank” which closely approximates the theoretical
classifier to be introduced. He defined a “nearest” match filter, discussed its error rate, and observed that such classifiers can only carry out the first “local in time” stage of
pattern recognition and that context must be expoited to achieve high performance pattern recognition.)

Paul Gorman, of Bendix Aerospace and Terrence Sejnowski, of John Hopkins University, collaborated on a paper which discussed the application of back—propagation
to classify sonar targets (GORMANL. The signal representation used for input to the network was selected as the result of experiments with human listeners. A short term
Fourier transform using B0 frequency samples per temporal slice was generated for each signal. By starting at the onset of the signal and increasing the position of the time
slice, approximately a linear FM/chirp, essentially formed the diagonal of a 60 x 60 time/frequency matrix. Normalized values from the matrix served as input to the matrix.
Results from experiments indicated that the network is able to discover target classification features from examples of sonar signals with performance comparable to human
experts.

Results on applying back—propagation to handwritten numerical recognition and spoken numeral recognition were reported by D.J. Burr of Bell Communications Research
[BURR]. Burr gave tutorial explanations of related geometric hyperplane analysis and back-propagation learning in addition to thorough treatments of recognition of handwritten
and spoken numerals. For the handwritten numerals a two-stage process of normalization followed by feature extraction was used. it was found necessary to subtract a cons-
tant representing signal level from all feature vectors. Removing the D.C. component in this was dramatically increased the learning rate of the network. The neural networks
were configured with up to 64 hidden units, but it was found that a maximum recognition score around 98% occurred with 6 and 14 hidden units for the written and spoken
recognition tasks respectively. Burr's results compared favorably to nearest neighbor pattern recognition applied to the same problem.

Alan Kawamoto and James Anderson extended Anderson’s Brain State-in-a-Box (BSB) mode! to define a new ANS which models multistable perception
[KAWAMOTD). The BSB extension allows the ANS to shift between hyperspace box comers in a way corresponding to multistable perception. After explaining the analytical
properties of their new ANS, Kawamoto and Anderson showed how their ANS qualitatively agrees with published psycho—physical results on multi-stable perception regarding
bias, adaptation, hysteresis, and dynamics. Most of the results discussed concern visual ambiguities but speculations concerning lexical ambiguity resolution are presented also.
46 ANS's Applied to Vision

Maureen Gremillion, Arnold Mandell and Bryan Travis reported on their design and implementation of a neural net model of the mammalian visual system in
[TRAVIS). These researchers from Los Alamos National Laboratory modeled a scaled down version of primary visual cortex, the lateral geniculate nucleus, and a 45,000 neuron
retina. Research types are embedded in two-dimensional layers and differentiated cell types are distributed in space. Several different retina models from the visua! modeling
literature were tested.

Kunihiko Fukushima, of NHK Science and Technical Research Laboratories in Japan, discussed a multilayered hierarchical ANS called the ““Neocognitron”, in
[FUKUSHIMA]. The Neocognitron consists of alternating layers of feature-extracting neurons and neurons which are fed outputs from feature-extracting neurons and fire only if
one input is active. Inhibitory cells exist to suppress irrelevant features. The Neocognition is capable of supervised or unsupervised learning and can recognize shifted or
deformed variations of a pattern. Excessive distortion results in windowed recognition response. A Neocognition with selective attention is currently being investigated by
Fukushima.

Ronald Williams, of Northeastern University, investigated the ability of self-organizing networks to infer spatial relations [WILLIAMS]. Williams was motivated by the
dipole pattern neural network experiments conducted by Rumethart and Zipser where, without a priori knowledge of the spatial layout of the input, an ANS learned apsects of
input spatial structure. He mathematically formalized the notion that if two patterns are strongly correlated then they must be nearer in some metric than if their values are
weakly correlated. The concept of a spatial relationship or pattern element is formalized in terms of a distance metric on pairs of elements and the notion of an environment
with spatial structure is formalized as a random field over a metric space.

103

Richard Golden, of Brown University, developed an ANS which models the process of visual perception of a letter in the context of a word. Interconnections between
neurons represent any spatially or sequentially redundant and transgraphemic information in displays of letter strings. Golden’s model uses Anderson’s BSB model and
enhancements derived from commonly accepted principles of information processing in the central neurons system. In Golden's model, a word is represented as a pattern of
neural activity over a set of position-specific feature neurons.

Image restoration involves removing degradations from images arising from biur from optical aberrations, atmospheric turbulence, motion, defraction, and noise. The
application of ANS methods to image restoration is currently being investigated by Y.T. Zhou, R. Chellapa and B.K. Jenkins of the University of Southern California [ZHOU].
They designed an ANS containing redundant neurons to restore gray level images degraded by shift invariant blur function and noise.

Ralph Linsker, of the IBM Thomas J. Watson Research Center, addressed the origin and organization of spatial-opponent and orientation-selective neurons in ANS's
based on biologically plausible roles for development [LINSKER]. Linsker treats the emerging of network structures from spontaneous electrical activity and simple biologically
based rules for synaptic modification.

Ralph Siegel, currently of Rockerfeller University and formerly of the Salk Institute, analyzed the abilities of Rhesus monkeys and human subjects to detect the change
in three-dimensional structure of cylinder using only motion cues [SIEGEL]. Siegel implemented a three layer ANS with 100 neurons in the input layer homologous to the
neurons in the middle temporal area of the brain. Each input neuron was tuned for a given velocity at a retinotopic location and corrected to all ten units in the middle layer.
The middle ten units were connected to only one neuron in the output layer which indicated structure as constructural motion.

J.M. Oyster, W. Broadwell and F. Vicuna of the IBM Los Angeles Scientific Center, investigated the application of associative metworks to robot vision in [OYSTER].
The approach taken to robotic vision by these IBM researchers was to show how the well known methods for robotic vision, such as image acquisition, segmentation, object
recognition, etc., can be implemented in an associative network. They rigorously convert a discrete convolution to an associative network and then argue that the standard
low-level edge-detection operators, such as the Roberts, Sobel, and Laplacian and Gaussian operators can be implemented as ANS's.

Christof Koch, Jose Marroquin and Alan Yuille demonstrated how Hopfield ANS models can be generalized to solve nonconvex energy functionals corresponding to
functions of early vision such as computing depth from two stereoscopic images, reconstructing and smoothing images from sparsely reconstruction can be formulated in terms
of minimizing a quadratic energy function and, subsequently, show how quadratic variational principles fail to detect image discontinuities. An energy function containing cubic
terms is defined which is shown to handle discontinuities.

6. Cottrell, P. Munro and D. Zipser applied back—propagation to compressing images [COTTRELL]. Current (1987) image compression techniques are briefly treated as
in back-propagation. Image compression is considered to be a type of encoder problem in that an identity mapping over some set of inputs must be performed An ANS is
forced to perform the mapping of a narrow channel of the network and thereby causes an efficient encoding. Two noteworthy facts are: 1) the network developed a compaet
representation of its environment, 2) although the algorithms were developed as supervised learning schemes, the problem really involves learning without a teacher since the
input and output are identical, i.e., the ANS self-organizes to encode the environment. Most of their image compression results were obtained with a three layer network: G4
inputs, 16 hidden units and 64 outputs.

Stephen Grossberg developed a theory of vision which offers an explanation of the coherent synthesis of three-dimensional form, color, and brightness percepts
[GROSSBERG]. The theory identifies several uncertainty principles that limit the extraction of visual information. Particular modules are resolves by hierarchical parallel interac-
tions between many processing stages. Grossberg asserts that when a neural processing stage removes one type of uncertainty from any input pattern it often generates a
new type of uncertainty which is passed to the next processing stage. That is, information is not progressively reduced in a succession of neural processing stages. Based on
results of monocular boundary segmentation and feature filling—in and the interaction between these processes, Grossberg suggests that the commonly accepted hypothesis of
independent modules in visual perception is wrong and misleading.

Harold Szu and Richard Messner derived multiple—channel novelty filters of associative memory from a retina ANS point-spread function [SZU]. They present a novelty
filter as a remainder operator and mathematically drive the multiple-channel model from associative memory formulation. Their ANS is shown to be scale and rotation invariant
and simulation results are cited. They also point out a new relationship between adaptive novelty filtering and adaptive associative memory.

Michae! Mozer of the Institute for Cognitive Science at UCSD, investigated early parallel processing in reading [MOZER] and developed an ANS capable of recognizing
multiple words appearing simultaneously on an artificial retina. The ANS is called “"BLIRNET" since it builds location-independent representations of multiple words. BLIRNET is
a multilayered hierarchical network which learns via back-propagation.

4.7 ANS's for Speech and Language

Bryan Travis, of the Los Alamos National Laboratory, described a layered ANS model of sensory cortex in [TRAVIS]. The goal of Travis' research program was to con-
struct a model of the human sensory system which reflects what is known structurally and physiofogically at several levels from the ear to the midbrain nuclei to the cortex.
Travis made simplifications in scale to accommodate current computer technology constraints but claimed that his modef contained the following desirable features: 1) more
structure (based on neurophysiological data) than previous models, 2) inputs based on biological data, 3} emphasizes dynamics, and 4) provides a means of testing theories
about sensory perception.

D.W. Tank and J. Hopfield developed an analog ANS capable of solving a general pattern recognition problem for time-dependent input signals [TANK]. In order to solve
such sequence recognition problems, Tank and Hopfield expanded the Hopfield ANS's Energy function to include time dependence. In the case of a time-dependent energy func-
tion, a convergent computation can occur if the problem's data produce a channel on the space-time surface which guides the circuit trajectory to a position corresponding to
a correct solution. A key concept for applying a time-dependent Hopfield model is the using of 3 set of delay filters as a sequence detector. An energy function is defined
which, when presented with a known sequence builds a deep pit on the space-time energy surface with a wide valley leading to it.

An analysis of the hidden structure of speech was performed by Jeffrey Elman and David Zipser of the Institute of Cognitive Science at the University of California at
San Diego [ELMAN). Using back-propagation, Eiman and Zipser taught an ANS, a series of speech recognition tasks, and after examining the resulting ANS internal representa-
tions found that the representations often corresponded to known speech representational units such as: diphones, context-sentence allophones, phonemes, syllables, and
morphemes.

Michael Meyers, Robert Kuczewski and William Crawford of TRW's Al Center in San Diego, ran experiments to investigate ANS self-organization and temporal com-
pression methods using Lengfish {a form of artificial speech) based on text from a childrens’ book [MEYERS]. They report that the development of a self-organization ANS
which concurrently performs dimension reduction, pattern recognition, and new pattern learning. Pre-processing consisted of a linear shift invariant KCM transform and using
such a stabilized high dimensional vector time series the ANS learns hierarchical features and their correfations.

Tariq Samad of Honeywell, Incorporated, described an application of back propagation to determine the correct set of features corresponding to words in an input
sentence [SAMAD]. Samad states that human cognitive functions such as the acquisition of concepts, tolerance of error and noisy input, graceful degradation have eluded solu-
tions in traditional computer approaches but can be solved as sideeffects with ANS's. He reviewed previous related work on parsing, case-role assignment, and word-sense
disambiguation and related his ANS to recent work by McClelland and Kawamota.

1) The ANS outputs, an association of features with input words where the ANS learned concepts such as “proper noun”, “animate-common-noun”, and “inanimate-
commeon-noun”.

2) The ANS outputs were as in 1} concepts such as “plural” and “read”, the grammar was also extended preferred associations.

3) More connections were made with central {in a window) words than off-center words to enable preferred associations.

K. Torkkola, H. Rittinen and T. Kohonen reported on the results of a microprocessor-based word recognizer for a large vocabulary {1000 words) in [TORKKGLA]. Their
system is capable of phonemic recognition using an ANS in the form of a phonotopic map. The map consists of a two-dimensional array of processing units which constitute
matched filters to different phonemes. Each unit is tuned to a particutar acoustical spectrum and the spectral templates of the units have a distribution which corresponds to
the optimal clustering of the various phonemes. Word recognition is performed by comparison of phonemic transcriptions with reference transcriptions stored in a dictionary.

M. Cohen and S. Grossberg, of the Center for Adaptive Systems at Boston University, presented a computational theory explaining how an observer parses a speech
stream into context-sensitive language representations in (COHEN, abs]. Cohen and Grossberg’s theory stress the real time dynamical interactions that control the development
of languages as well as learning and memory. Properties of the performance of language result from an analysis of the system constraints governing stable language learning.
The process whereby internal language representations encode a speech stream in a context-sensitive fashion are analyzed. Cohen and Grossberg also show how organizationat
principles, important for visual processing, can be applied to fanguage processing and, thus, a similar model can be used for spatial processing as well as temporal processing.

104

Stephen Grossherg and Gregory Stone presented models of the neural dynamics of word recognition and recall in [GROSSBERG]. A major goal of this paper was to
synthesize the many experiments and models of human language processing and to show that learning rules and information rules are intimately connected. Grossberg and Stone
maintain that to understand word recognition and recall data, it is necessary to analyze the computational units that subserve speech and language and it is also necessary to
consider how computational units acquire behavioral memory by reacting to behavioral inputs and generating behavioral outputs. Furthermore, they assert that explanations of
hidden processing assumptions that go into a model along with tests of their plausibility and ability to arise through self-organization are required. Models such as the Logogen
maode!, verification model, and the Posner and Snyder model are reviewed using concepts such as automatic activation, limited capacity, attention, serial search, and interactive
activation.

49 Knowledge Processing

Lokendra Shastri, currently of the University of Pennsylvania, investigated evidential reasoning in ANS's for his PhD thesis at the University of Rochester [SHASTRI].
The following two issues were considered by Shastri to be crucial to making progress in knowledge representation:

1} The necessity of identifying and formalizing inference structures that are appropriate for dealing with incompleteness and uncertainty. An agent cannot maintain complete
knowledgte about any but the most trivial environments, and therefore, he must be capable of reasoning with incomplete and uncertain information.

2) The importance of computational tractability. An agent must act in real-time. Human agents take a few hundred milliseconds to perform a broad range of intelligent
tasks, and we should expect agents endowed with artificial intelligence to perform similar tasks in comparable time.

Shastri regards these two issues to be intimately related and stressed that computational tractability is not solely concerned with efficiency, optimizing programs, or
faster machines. The main issue, he believes, is to establish the existence of a computational account of how an ANS may draw valid conclusions within time constraints
which a given environment allows. Shastri contends that the full power of parallelism can be exploited only if it is taken, as an essential premise used to guide searches for
interesting problem solutions in the space of possible knowledge representation frameworks, as opposed to finding serial solutions and subsequent parallel implementations.

John Barnden of indiana University, devised an abstract computational architecture that can embody complex data structures and associated manipulations [BARNDEN].
Barnden addresses many of the issues raised in an NSF sponsored 1986 workshop on ANS's (MCCLELLAND, J., FELDMAN, J., BOWER, G., and MCDERMOTT, D., “Report of a
Workshop on Connectionism Instigated by NSF, 1986). In particular, an opinion expressed at the workshop that “Connectionism has not yet shown its adequacy for dealing
with complex — perhaps deeply nested-representations and connectionist problems concerning crosstalk, explosive proliferation, binding and control, are addressed by Barnden in
his exposition of his architecture. Barnden's architecture is based on two-dimensional arrays called “configuration matrices” which contain positioned occurrence of basic

symbals.
James A. Anderson of Brown University described cognitive capabilities such as concept formation, inference, and guessing associated with the “Brain-State-in-a-Box”

{BSB) ANS are nearly identical to those used by Hopfield for continuous valued systems. Information handling capabilities were characterized as follows: 1) Poor handling of
precise data, 2) Inefficient use of memory in a traditional serial computer, 3) Several parameters must be tuned, and 4) Outputs may be distorted (or incorrect}.

Anderson contends that the above information processing deficiencies are the cost that must be paid for the advantages obtained from ANS's, like BSB when applied to
knowledge databases.

James Anderson, Richard Golden and Gregory Murphy discussed an ANS with a Hebbian learning rule in (ANDERSON). They showed that the Brain-State-in-a-Box
{BSB) model is similar to a gradient descent algorithm and how the behavior of many ANS's can be viewed in a probabilistic framework. They further showed that Hebbian
learning and autoassociative Widro—Hoff learning can be considered to be ways of estimating the form of an associated probability density function of the form:

P = k expl-IxT Ax)2)
where “A” = a weight matrix and the pdf can adequately represent any arbitrary pdf of binary-valued stimulus vectors that may occur n the model’s environment.

Concepts in distributed representations, implications of error correction for concept formation, retrieval, redundancy, and disambiguation by context were also discussed in
the paper.

Stephen Grossberg, of Boston University and William Gutowski, of Merrimack College, analyzed the neural dynamics of decision making under risk [GROSSBERG]. This
paper contains a review of models of human decision making under risk. Utility theory and prospect theory are discussed and model deficiencies are pointed out. Prospect
theory, for example, does not account for non-rational decision theory such as preference reversal where in a binary choice situation an individual prefers an alternative which
has been judged to be worth less than the nonpreferred alternative. A new theory of decision making under risk, called affective balance theory, is described which is an
application of previous Grossberg theories of how cognitive and emotional processes interact. The previous theory was used to model pereeption, attention, motivation, learning,
and memory. Affective balance theory is based on psychophsyiological mechanisms and processes derived from analyzing relevant data.

Data Ballard of the University of Rochester, investigated a completely parallel connectionist inference mechanism based on energy minimization [BALLARD]. Ballard used
a relaxation algorithm to produce inferences in first order logic derived from a very large knowledge base. He showed that for first order predicate calculus formulas and
inferences rules a proof producer {resolution) can be uniquely expressed as a neural network with a very simple form. The implementation of first order logic constraints yield
two coupled networks, namely, a clause network that represents clause syntax and a binding network representing relationships between terms in different clauses.

Michael Cohen and Stephen Grossberg of the Center for Adaptive Systems at Boston University, discussed a network with very extensive capabilities in hypothesis
formation, anticipation, and prediction [COHEN]. The netwaork is called a “masking field” and is a multiple scale, self-similar, cooperative-competitive feedback network with
automatic gain control. Cohen and Grossberg discuss context sensitive grouping in recognition processes, cognitive rules arising from network interactions, and how a masking
field possesses predictive anticipatory or priming capabilities. Their analytic arguments contain several references to simulation results obtained in their research on masking
fields.

Claude Cruz, William Hanson and Jason Tom of the IBM Palo Alto Scientific Center, described the research activities in knowledge processing in [CRUZ, abs]. They
introduced a conceptual scheme for representing knowledge and for performing inferences called “Knowledge Representation Networks” [KRN]. The network consists of a set of
knowledge entities (KE's) having varying states of activity. It is postulated that only three basic KE's are required to produce more complex KE's, namely: 1) features, 2) rela-
tionships between features, and 3} operations. A KRN inference results from a change in state of a KE which leads to a change in state of another KE. A KRN contains five
mechanisms which results in knowledge processing: 1) Implication: a forward-chaining evidential reasoning mechanism; 2) Context: the KRN's current state affects subsequent
sensory processing; 3) Goal-decomposition: a forward chaining mechanism reducing the operations to sets of coordinated sub-operations; 4} Goal-biasing: a mechanism
which enables events to trigger operations in a production-rule-like manner; and 5) Expectations: a mechanism which enables operations to be executed in a closed loop posi-
tion using knowledge of events expected to occur as the operation is executed.

4.10 Robotics/Control

Stephen Grossherg presented an analysis of adaptive sensory—motor control in [SROSSBERG). The analysis considered the developmental and learning problems that an
ANS (also real brain system) must solve to enable accurate performance in a dynamic real-world environment. The main emphasis of Grossberg's sensory-motor control analysis
was on visually guided motor behavior and his results are considered to be relevant to issues such as localization, orienting, sensorimotor interfacing, and the design of motor
pattern generating circuitry. Grossberg illustrates general organizational principles and mechanisms through analyzing the mammalian saccadic eye movement system. The issue
of infinite regress, where changes in serial subsystems can interact to undo changes in other subsystems, was addressed by introducing attentionally mediated inte:esting
SENsory cues.

Geoffrey Hinton of Carnegie-Mellon University and Paul Smolensky of the Institute for Cognitive Science at the University of California at San Diego, analyzed mass-
spring model of motor control using a neural-network [HINTON]. ANS methods which can solve the problems of finding necessary torques and generating internal representa-
tions of desired trajectories for reaching movements of arm and body are identified. Hinton and smolensky comparatively analyzed many conventional methods of robotic control
and found, for example, that desired final robot configurations via using length-tension characteristics to set end points is ineffective control. They also discussed Raibert’s
massive memory control table approach and the Luh-Walker-Paul sequential control algorithm.

105

10.

11.

12.
13.

14.

15.
16.

17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

5.0 REFERENCES
David H. Ackley, Stochastic Iterated Genetic Hillclimbing, CMU-CS-87-107, Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
Joshua Alspector and Robert B. Allen, A Neuromorphic VLSI Learning System, Proc. of
the 1987 Stanford Conf. on Adv. Res. in VLSI
James A. Anderson, Richard M. Golden, and Gregory L. Murphy, Concepts in Distributed
Systems, S.P.I.E. Institute on Hybrid and Optical Computing, Dept. of Psychology,
Brown University, Providence RI 02912
James A. Anderson and Gregory L. Murphy, Psychological Concepts in a Parallel
System, Physica D 22 318-331, North-Holland, Amsterdam, Dept. of Psychology & Center
for Cognitive Science, Brown University Providence, RI
James A. Anderson, Disordered Systems and Biological Organization, Nato Advanced
Research Workshop
K.L. Babcock and R.M. Westervelt, Stability and Dynamics of Simple Electronic Neural
Networks with Added Inertia, Physica 23D (1986) 464-469 North-Holland, Amsterdam
K.L. Babcock and R.M. Westervelt, Complex Dynamics in Simple Neural Circuits,
Harvard University
Bil11 Baird, Nonlinear Dynamics of Pattern Formation and Pattern Recognition in the
Rabbit Olfactory Bulb, Physica 22D (1986) 150-175, North-Holland, Amsterdam,
Department of Biophysics, University of California, Berkeley, CA 94611
Pierre Baldi, Neural Networks, Orientations of the Hypercube and Algebraic Threshold
Functions, IEEE Transactions on Information Theory, Dept. of Mathematics, University
of California, San Diego, La Jolla, CA 92093
Pierre Baldi and Santosh S. Venkatesh, Number of Stable Points for Spin-Glasses and
Neural Networks of Higher Orders, Physical Review Letters Vol. 58, Number 9, 1 March
1987
Dana H. Ballard, Cortical Connections and Parallel Processing: Structure and
Function, The Behavioral and Brain Sciences (1986) 9, 67-120, University of
Rochester, Rochester, NY 14627
Dana H. Ballard, Cortical Connections and Parallel Processing: Structure and
Function, TR 133 (revised) January 1985, University of Rochester
John Barnden, Complex Cognitive Information-Processing: A Computational Architecture
with a Connectionist Implementation. TR 211, December 1986, Indiana University,
Bloomington, IN 47405-4101
Andrew G. Barto, Learning by Statistical Cooperation of Self-Interested Neuron-like
Computing Elements, COINS Technical Report 85-11 April 1985, University of
Massachusetts, Amherst, MA 01003
D. G. Bounds, Numerical Simulations of Boltzmann Machines, Proc Neural Network for
Computing, Snowbird, Utah 1986
D. J. Burr, Matching Elastic Templates, Proceedings of the Royal Society Symposium
on Physical and Biological Processing of Images, London, September 27-29, 1982
D. J. Burr, Experiments with a Connectionist Text Reader, Bell Comm. Res., 1987
D. J. Burr, A Neural Network Digit Recognizer, Bell Comm. Res.
David J. Burr and Stephen Jose Hanson, Knowledge Representation in Connectionist
Networks, Bell Comm. Res.
Gail A. Carpenter and Stephen Grossberg, Associative Learning, Adaptive Pattern
Recognition, and Cooperative-Competitive Decision Making by Neural Networks Source:
Hybrid and Optical Computing, SPIE 1986
Gail A. Carpenter and Stephen Grossberg, Northeastern University, Boston, MA 02115
and Boston University, A Massively Parallel Architecture for a Self-Organizing
Neural Pattern Recognition Machine, "Computer Vision and Image Processing", 37
(1987)
Gail A. Carpenter and Stephen Grossberg, Mammalian Circadian Rhythms: A Neural
Network Model, Lectures on Mathematics in the Life Sciences, Vol. 19, 1987
Patrick Castelaz, John Angus, and Joan Mahoney, Application of Neural Networks to
Expert System and Command & Control Systems, Hughes Aircraft, Fullerton, CA
Michael A. Cohen and Stephen Grossberg, Masking Fields: A Massively Parallel Neural
Architecture for Learning, Recognizing, and Predicting Multiple Goupings of
Patterned Data, Applied Optics, in press, May, 1987, Center for Adaptive Systems,
Boston University, Boston, MA 02215
Garrison W. Cottrell, Paul Munro, David Zipser, Image Compression by Back
Propagation: An Example of Extensional Programming, UCSD Institute for Cognitive
Sciences
William Crawford, Michael Myers, Robert Kuczewski, Application of New Artificial
Neural System Information Processing Principles to Pattern Classification, TRW
(Rancho Carmel, San Diego) Technical Memo
Claude A. Cruz, William A. Hanson, Jason Y. Tam, Knowledge Processing Through Flow-
Of-Activation, To Appear in Proceedings of 1987 IEEE First Annual International
Conference on Neural Networks IBM Palo Alto Scientific Center, Palo Alto, CA 94304
Claude A. Cruz, William A. Hanson, Jason Y. Tam, Neural Network Emulation Hardware
Design Considerations, To appear in Proceedings of 1987 IEEE First Annual Inter-
national Conference on Neural Networks IBM Palo Alto Scientific Center, Palo Alto,
CA 94304

106

29.

30.
31.
32.

33.

34.

35.
36.
37.
38.
39.
40.
41.
42.
43.

44.

45.

46.

47.

48.

49.

50.
51.
52.

53.
54.

55.

56.

57.

58.

M. Cohen and S. Grossberg, Neural Dynamics of Speech and Language Coding:
Developmental Programs, Perceptual Grouping, and Competition for Short-Term Memory,
Human Neurobiology (1986)5:1-22
John S. Denker, Neural Network Models of Learning and Adaptation, AT&T Bell
Laboratories, Holmdel, NJ 07733
G. Ed. Denker, Neural Networks for Computing, American Institute of Physics, 1986,
Proceedings 151.
H. Dreyfus, From Socrates to Expert Systems: The Lilmits of Calculative
Rationality, Bulletin of the Academy of Arts and Sciences, January 1987, No. 4, Vol
XL.
Omer Egecioglu, Terence R. Smith and John Moody, Computable Functions and Complexity
in Neural Networks, Computer Science Dept, U. of Cal. Santa Barbara, Santa Barbara,
CA
Jeffrey L. Elman, James L. McClelland, Exploiting Law Variability in the Speech
Wave, For MIT Conference on Invariance and Variability in Speech Processes October
8-10, 1983
Jeffrey L. Elman, Connectionist Approaches to Acoustic/Phonetic Processing, Dept. of
Linguistics, University of California, San Diego
Mark Fanty, A Connectionist Simulator for the BBN Butterfly Multiprocessor, TR 164
January 1986, U. of Rochester
Jerome A. Feldman, Connectionist Models and Parallelism in High Level Vision,
Computer Vision, Graphics, and Image Processing 31, 178-200 (1985)
Jerome A. Feldman, Energy and the Behavior of Connectionist Models, TR 155, November
1985, U. of Rochester
Jerome A. Feldman, Neural Representation of Conceptual Knowledge, TR 189 June 1986,
U. of Rochester
A. D. Fisher, On Applying Associative Networks, Submitted to: IEEE First Annual
International Conference on Neural, Networks, San Diego, CA June 1987.
Arthur D. Fisher, Robert C. Fukuda, John N. Lee, Implementations of Adaptive
Associative Optical Computing Elements, SPIE, Vol. 625 Optical Computing (1986)
W. J. Freeman, Simulation of Chaotic EEG Patterns with a Dynamic Model of the
O1factory, System Biol. Cybern. 55 (1987)
Walter J. Freeman, M.D., Hardware Simulation of Brain Dynamics in Learning: The
SPOCK, Submitted for the IEEE 1st Annual Intl. Conf. on Neural Networks, San Diego,
CA 21-24 January 1987
Walter J. Freeman, Semi-Autonomous Control of Input by Nerve Cell Assemblies Through
Genesis of Images, CH1935-6/83, 1983 IEEE, U. of Calif., Berkeley
Frisy, Seeing, Oxford Unitersity Press.
Kunihiko Fukushima, Neocognitron: A Brain-Like System for Pattern Recognition,
Denshi Tokyo No. 25(1986) NHK Science & Technical Research Laboratories 1-10-1,
Kinuta, Setagaya, Tokyo 157, Japan
Kunihiko Fukushima, Sei Miyake and Takayuki Ito, Neocognitron: A Biocybernetic
Approach to Visual Pattern Recognition, NHK No. 336 September 1986 (ISSN 0027-657X),
gHK Science & Technical Research Laboratories 1-10-11, Kinuta, Setagaya, Tokyo 157,
apan
Kunihiko Fukushima, A Neural Network Model for Selective Attention in Visual Pattern
Recognition, Biol. Cybern. 55, 5-15(1986)
Kunihiko Fukushima and Takayuki Ito, A Neural Network Model Extracting Features from
Speech Signals, The Transactions of the Institute of Electronics, Information and
Communication Engineers, Japan, Vol. J70-D, No. 2, pp. 451-462
Kunihiko Fukushima, Neocognitron: A Brain-Like System for Pattern Recognition,
Denshi Tokyo (published by the Tokyo Section, IEEE) No. 25 (1986)
Richard M. Golden, A Developmental Neural Model of Visual Word Perception, Cognitive
Science 10, 241-276(1986)
Richard M. Golden, The "Brain-State-in-a-Box" Neural Model Is a Gradient Descent
?1gorithm, Reprinted from Journal of Mathematical Psychology Vol. 30, No. 1, March
986
Leslie M. Goldschlager, A Computational Theory of Higher Brain Function, Stanford
Computer Science Report
R. Paul Gorman, Terrence J. Sejnowski, Learned Classification of Sonar Targets Using
a Massively-Parallel Network, Proc. of the Digital Signal Processing Workshop (1986)
Sponsored by: IEEE Acoustics, Speech and Signal Processing Society Rev. 4/26/87
H.P. Graf, L.D. Jackel, R.E. Howard, B. Straughn, J.S. Denker, W. Hubbard, D.M.
Tennat, and D. Schwartz, VLSI Implementation of a Neural Network Memory with Several
Hundreds of Neurons, AT&T Bell Laboratories, Holmdel, NJ 07733
Stephen Grossberg, Cortical Dynamics of Three-Dimensional Form, Color, and
%r;ghtness Perception: 1. Monocular Theory, Perception & Psychophysics 1987, 41
2), 87-116
Stephen Grossberg and Ennio Mingolla, Computer Simulation of Neural Networks for
?g;ceptua] Psychology, Behavior Research Methods, Instruments, & Computers 1986, 18
, 601-607
Stephen Grossberg, Cortical Dynamics of Three-Dimensional Form, Color, and
Brightness Perception: II. Binocular Theory, Perception & Psychophysics 1987, 41
(2), 117-158

107

59.

60.

61.

62.

63.

64.

65.
66.

67.
68.

69.
70.

71.

72.

73.

74.
75.
76.
7.
78.

79.
80.
81.
82.
83.

84.
85.

86.
87.

Stephen Grossberg and Ennio Mingolla, Neural Dynamics of Surface Perception:
Boundary Webs, I1luminants, and Shape-From-Shading, Source: from "Computer Vision
and Image Processing", 37, (1987)

Stephen Grossberg and William E. Gutowski Neural Dynamics of Decision Making Under
Risk: Affective Balance and Cognitive-Emotional Interactions Source: Psychological
Review, in press, 1986

Stephen Grossberg Cooperative Self-Organization of Multiple Neural Systems During
Adaptive Sensory-Motor Control Source: Center for Adaptive Systems, Boston
University, Boston, MA 02215

Stephen Grossberg and Gregory Stone Neural Dynamics of Attention Switching and
Temporal-Order Information in Short-Term Memory Memory & Cognition 1986, 14 (6),

451-468
A. Guez, V. Protopopescu, J. Barhen, On the Stability, Storage Capacity and Design

of Nonlinear Continuous Neural Networks, Prepared by the Oak Ridge Natl. Laboratory,
0ak Ridge, TN 37831

Dan Hammerstrom, Casey Bahr, Jim Bailey, Gary Beaver, Kevin Jagla, Norman May, A
Development Environment for Wafer-scale Integrated Silicon Neuron-computers, Oregon
Graduate Research Center, 1987

Dan Hammerstrom, Jim Bailey, and Mike Rudnick, Interconnect Architectures for WSI
Neurocomputers, Oregon Graduate Research Center, 1987

Robert Hecht-Nielsen, Performance Limits of Optical, Electro-Optical, and Electronic
Neurocomputers, HNC 5893 Oberlin Dr., San Diego, CA 92121, SPIE Optical and Hybrid
Computing, Vol. 634, 1986

Robert Hecht-Nielsen, Nearest Matched Filter Classification of Spatiotemporal
Patterns, HNC Hecht-Nielsen Neurocomputer Corporation

David Hestenes, How the Brain Works: the Next Great Scientific Revolution,
Presented at the Third Workshop on Maximum Entropy and Bayesian Methods in Applied
Statistics (U. of Wyoming, Aug. 1-4, 1983)

Geoffrey Hinton and Paul Smolensky, Parallel Computation and the Mass-Spring Model
of Motor Control, Institute for Cognitive Science, U. of Calif., San Diego

Morris W. Hirsch, Convergence in Neural Nets, Dept. of Mathematics, U. of
California, Berkeley, CA 94720

Geoffrey W. Hoffmann, A Neural Network Model Based on the Analogy with the Immune
System, Dept. of Physics & Microbiology, University of British Columbia, Vancouver,
B.C., Canada V6T 2A6

Geoffrey W. Hoffmann, Maurice W. Benson, Geoffrey M. Bree and Paul E. Kinahan, A
Teachable Neural Network Based on an Unorthodox Neuron, Physica 22D (1986) 233-246,
North-Holland, Amsterdam

J. J. Hopfield, A. Gelperin and D. W. Tank, The Logic of Limax Learning, AT&T Bell
Laboratories, Murray Hill, NJ 07974 and (AG) Dept. Biology, Princeton Univ.,
Princeton, NJ 08544, (JJH) Div. of Chemistry and Biology, Calif. Institute of Tech.,
Pasadena, CA 91125

John J. Hopfield and David W. Tank, Computing with Neural Circuits: A Model,
Articles 8 August 1986

W. Hubbard, D. Schwartz, J. Denker, H.P. Graf, R. Howard, L. Jackel, B. Straughn, D.
Tennant, Electronic Neural Networks, ATAT Bell Laboratories, Holmdel, NJ 07733

B.A. Huberman, W. Scott Stornetta, An Improved Three-lLayer, Back Propagation
Algorithm, ICNN 1987, pre-print

B.A. Huberman, T. Hogg, Adaptation and Self-Repair in Parallel Computing Structures,
Vol. 52, Number 12, Physical Review Letters, 19 March 1984

James M. Hutchinson and Christof Koch, Simple Analog and Hybrid Networks for Surface
Interpolation, "Neural Networks for Computing", ed. T.S. Denber, pp. 235-239,
American Institute of Physics, New York, 1986

Michael I. Jordan, Serial Order: A Parallel Distributed Processing Approach, ICS
Report 8604

Pentti Kanerva, Sparse, Distributed Memory for Patterns and Sequences, RIACS, NASA
AMES

Pentti Kanerva, Parallel Structures in Human and Computer Memory, RIACS Technical
Report TR-86.2, January 1986

Alan H. Kawamoto and James A. Anderson, A Neural Network Model of Multistable
Perception, Acta Psychologica 59 (1985)35-65 North Holland

James D. Keeler, Comparison Between Sparsely Distributed Memory and Hopfield-Type
Neural Network Models, submitted to J. Cog Sci also RIAES Tech. Report 86.31

James D. Keeler, Information Capacity of Hebbian Neural Networks, submitted to Phys.
Rev. Letters PACS Numbers: 87.30, 89.70

A. Harry Klopf, Drive-Reinforcement Learning: A Real-Time Learning Mechanism for
Unsupervised Learning, Submitted to the IEEE First Annual International Conference
on Neural Networks, San Diego, California 21-24 June 1987

Christof Koch, Jose Marroquin, and Alan Yuille, Analog "Neuronal" Networks in Early
Vision, Proc. Natl. Acad. Sci. Vol. 83, pp. 4263-4267, June 1986

Teuvo Kohonen, Adaptive, Associative, and Self-Organizing Functions in Neural
Computing, #135, Helsinki University of Technology, Dept. of Technical Physics
Rakentajanaukio 2 C, SF-02150 Espoo, Finland

108

8s8.

89.

90.
91.

92.
93.
94.
95.
96.
97.
98.

99.
100.
101.
102.

103.

104.

105.
106.
107.

108.

109.

110.

111.

112.
113.

114.
115.

Teuvo Kohonen, Representation of Sensory Information in Self-Organizing Feature
Maps, and Relation of These Maps to Distributed Memory Networks, #129, Helsinki
University of Technology, Dept. of Technical Physics Rakentajanaukio 2 C, SF-02150
Espoo, Finland

Bart Kosko, Adaptive Bidirectional Associative Memories, To appear in “"Applied
Optics", Nov. 1987

Bart Kosko, Competitive Adaptive Bidirectional Associative Memories, ICNN, 1987

S. Y. Kung, and H. K. Liu, An Optical Inner-product Array Processor For Associative
Retrieval, A reprint from 0-E LASE ’86

Alan Lapedes and Robert Farber, A Self-Optimizing, Nonsymmetrical Neural Net for
Content Addressable Memory and Pattern Recognition, Physica 22D (1986) 247-259

Alan Lapedes and Robert Farber, Programming a Massively Parallel, Computation
Universal System: Static Behavior, Los Alamos National Laboratory

Lerner, Computer Vision Research Looks to the Brain, High Technology, May 1980.
Daniel S. Levine, A Neural Network Model of Temporal Order Effects in Classical
Conditioning Modelling of Biomedical Systems IMACS, 1986, Modeling of Biomedical
Systems, Elsevier Science Pub., 1986

Daniel S. Levine, A Neural Network Theory of Frontal Lobe Function, Proc. of the
Eighth Annual Conf. of the Cognitive Science Soc. (Amherst, MA, 1986), Erlbaum
Daniel S. Levine, Neural Population Modleing and Psychology: A Review, Mathematical
Biosciences 6:1983.

Ralph Linsker, From Basic Network Principles to Neural Architecture: Emergence of
Spatial-Opponent Cells, Proc. Natl. Acad. Sci. USA Vol. 83, pp. 7508-7512, October
1986

R. Lippmann, An Introduciton to Computing with Neural Nets, IEEE, ASSP Magazine,
April 198.

Jeffrey Locke, David Zipser, Learning the Hidden Structure of Speech, Report Number
ICS 8701, UCSD

James L. McClelland, Jeffrey L. Elman, The TRACE Model of Speech Perception, ICS,
ucso

Robert J. McEliece, Edward C. Posner, Eugene R. Rodemich and Santosh S. Venkatesh,
The Capacity of the Hopfield Associative Memory, IEEE Trans. Inform Theory, 1987 (To
Appear)

Michael C. Mozer, RAMBOT: A Connectionist Expert System That Learns by Example,
ICS, ucsD

C. Mozer, Early Parallel Processing in Reading: A Connectionist Approach, ICS, UCSD
P. Mueller, J. Lazzaro, A Machine for Neural Computation of Acoustical Patterns With
Application to Real Time Speech Recognition, U. of Penn., Phila., PA 19104-6059,
Calif. Inst. of Technology, Pasadena, CA

Michael H. Myers, Some Speculations on Artificial Neural System Technology, NAECON
1986 Proc.

Stephen M. Omohundro, Efficient Algorithms with Neural Network Behavior, Dept. of
Comp. Sci, U. of I11inois at Urbana-Champaign

J. Michael QOyster, Walter Broadwell, Fernando Vicuna, Associative Network
Applications to Robot Vision, Report No. 320-2777, Los Angeles Scientific Center
Ian Parberry, Georg Schnitger, Relating Boltzmann Machines to Conventional Models of
Computation, Dept. of Computer Science, Pennsylvania Univ.

David B. Parker, A Comparison of Algorithms for Neuron-Like Cells, 1986 AIP Proc.:
Neural Networks for Computing

Barak A. Pearlmutter, Geoffrey E. Hinton, G-Maximization: an Unsupervised Learning
Procedure for Discovering Regularities, Proceedings of the conference on "Neural
Networks for Computing" American Institute of Physics, 1986

Andras J. Pellionisz, Sensorimotor Operations: A Ground for the Co-Evolution of
Brain Theory with Neurobotics and Neurocomputers, Proc. IEEE 1st Ann. Internatl.
Conf. on Neural Networks, San Diego, CA 1987 June

P. Andrew Penz, The Closeness Code: An Integer to Binary Vector Transformation
Suitable for Neural Network Algorithms, Texas Instruments Inc., Dallas, TX

Tomaso Poggio, Vincent Torre and Christof Koch Computational vision and
Regularization Theory Source: Reprinted from Nature, Vol. 317, No. 6035, pp.
314-319, 26 September 1985

D. Psaltis, J. Hong, and S. Venkatesh, Shift Invariance in Optical Associative
Memories, Presented at Conf. on "Optical Computing’, LA, 1986

Demetri Psaltis and Cheol Hoon Park, Nonlinear Discriminant Functions and
Associative Memories, Calif. Inst. of Tech., Dept. of Electrical Eng., Pasadena, CA
91125

George N. Reeke, Jr. and Gerald M. Edelman, Selective Neural Networks and Their
Implications for Recognition Automata, The Rockerfeller University

Kathleen J. Roney and Gordon L. Shaw, Analytic Study of Assemblies of Neurons in
Memory Science, Physics Dept., Univ. of Calif., Irvine, CA 92717 Mathematical
Biosciences 51:25-41 (1980)

109

116.

117.
118.
119.
120.
121.
122.
123.

124.

125.

126.
127.
128.

129.

130.
131.
131.
132.
133.
134,
135.
136.
137.
138.

139.
140.
141.

142.

David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, Learning
Representations by Back-Propagating Errors, Nature Vol. 323 9 October 1986 David E.
Rumelhart, Donald A. Norman, Representation in Memory, Center for Human Information
Processing, U. of Calif., San Diego, La Jolla, CA

?ggg? E. Rumelhart, et al., Parallel Distributed Processing, (Vol 1 & 2) (MIT Press
J.P. Sage, K. Thompson, and R.S. Withers, An Artificial Neural Network Integrated
Circuit Based on MNOS/CCD Principles, MIT Lincoln Lab.

Tariq Samad, Refining and Redefining the Back-Propagation Learning Rule for
Connectionist Networks, Submitted to IEEE Systems, Man & Cybernetics Conf.

Tariq Samad, A Connectionist Network That Learns to Process Some (Very) Simple
Sentences, Honeywell, Inc., 1000 Boone Ave.N, Golden Valley, MN 55427

Richard J. Sasiela, Forgetting As A Way To Improve Neural-Net Behavior, American
Inst. of Physics, Neural Networks for Computing 1986

Lokendra Shastri, Evidential Reasoning in Semantic Networks: A Formal Theory and its
Parallel Implementation, TR 166, University of Rochester

Gordon L. Shaw and Kathleen J. Roney, Analytic Solution of a Neural Network Theory
Based on an Ising Spin System Analogy, Physics Letters, Vol. 74A, number 1,2 29 Oct
1979

Gordon L. Shaw, Physics Dept., Univ. of California, Irvine, CA 92717, Space-Time
Correlation of Neuronal Firing Related to Memory Storage Capacity, Brain Research
Bulletin, Vol 3, pp. 107-113, 1978

Gordon L. Shaw, Dennis J. Silverman, and John C. Pearson, Model of Cortical
Organization Embodying a Basis for a Theory of Information Processing and Memory
Recall, (Hebb synapse/selective adaptive network/axial next-nearest-neighbor Ising
model/fluctuations/synchronous time steps) Proc. Natl. Acad. Sci. USA Vol. 82, pp.
2364-2368, April 1985

R. M. Siegel and R. A. Andersen, Representation of Head-Centered Visual Space in the
Inferior Parietal Lobule of Macaque Monkey, The Salk Inst., San Diego

Christine A. Skarda and Walter J. Freeman, Brains Make Chaos to Make Sense of the
World, Behavioral and Brain Sciences, June 1987

S.L. Small, L. Shastri, M.L. Brucks, S.G. Kaufman, G. W. Cottrell, and S. Addanki,
ISCON: A Network Construction Aid and Simulator for Connectionist Models, TR 109,
U. of Rochester

B.H. Soffer, G.J. Dunning, Y. Owechko, and E. Marom, Associative Holographic Memory
with Feedback Using Phase-Conjugate Mirrors, Reprinted from Optics Letters, Vol. 11,
page 118, February 1986

H. Sompolinsky, Neural Networks with Nonlinear Synapses and a Static Noise,
Physical Review, Vol 34, No. 3, Sept. 1986

Harold H. Szu, Non-Convex Optimization, SPIE Vol. 698 Real Time Signal Processing IX
(1986)

Harold H. Szu and Richard A. Messner, Adaptive Invariant Novelty Filters, Proc. of
the IEEE, Vol. 74, No. 3, March 1986

D. W. Tank and J. J. Hopfield, Neural Computation by Concentrating Information In
Time, ATT Bell Labs, 1987

J. Ticknor, Harrison H. Barrett, Optical Implementations in Boltzmann Machines,
Optical Engineering 26(1), 016-021 (Jan. 1987)

Max Stanford Tomlinson Jr., Thesis Proposal: Analog Back Propagation Systems, UCSD,
Institute for Cognitive Sciences 1987

Santosh S. Venkatesh and Demetri Psaltis, Linear and Logarithmic Capacities in
Associative Neural Networks, Preprint submitted Mar 1985 to IEEE Transactions on
Information Theory, Revised Nov. 1986

John Voevodsky, A Neural-Based Knowledge Processor, Neuraltech, Mountain View, CA
{von der Malsburg, C.], Disordered Systems and Biological Organization, Springer
(1986)

Paul J. Werbos, Building and Understanding Adaptive Systems: A Statistical/Numerical
Approach to Factory Automation and Brain Research, IEEE Transactions on Systems,
Man, & Cybernetics, Vol. SMC-17, No. 1, January/February 1987

Ronald J. Williams, Reinforcement Learning in Connectionist Networks: A Mathematical
Analysis, ICS, UCSD

Ronald J Williams, Inference of Spatial Relations, Institute for Cognitive Science
UcsD C-015 La Jolla, CA 92093

Y.T. Zhou, R. Chellappa and B.K. Jenkins, A Novel Approach to Image Restoration,
Based on a Neural Network To be presented at First Intl. Conf. on Neural Nets San
Diego, June 1987

David Zipser, Programming Neural Nets To Do Spatial Computations, ICS Report 8608,
ucsp

110

N88-172271

DESIGN OF A NEURAL NETWORK SIMULATOR
ON A TRANSPUTER ARRAY

Gary Mcintire
Advanced Systems Engineering Dept.
Aerospace, Houston, TX.

Ford

Abstract

A high-performance simulator is being built
to support research with neural networks. All
of our previous simulators have been special
purpose and would only work with one or two
types of neural networks. The primary design
goal of this simulator is versatility; it should
be able to simulate all known types of neural
networks. Secondary goals, in order of
importance, are high speed, large capacity, and
ease of use. A brief summary of neural
networks is presented herein which
concentrates on the design constraints
imposed. Major design issues are discussed
together with analysis methods and the chosen
solutions.

Although the system will be capable of
running on most transputer architectures, it
currently is being implemented on a 40-
transputer system connected in a toroidal
architecture. Predictions show a performance
level nearly equivalent to that of a highly
optimized simulator running on the SX-2
supercomputer.

Introduction

There are several ways to simulate large
neural networks. Computationally speaking,
some of the fastest are via optical computers
and neural net integrated circuits (hardwired
VLSI). However, both methods have some basic
problems that make them unsuitable for our
research in neural networks. Optical
computers and hardwired VLS| are still under
development, and it will be a few years before

111

James Villarreal, Paul Baffes, and
Monica Rua Artificial Intelligence Section,
NASA/Johnson Space Center, Houston, TX.

they will be commercially available. Even if
they were available today, they would be
generally unsuitable for our work because
they are very difficult (usually impossible) to
reconfigure programmably. A non-hardwired
VLSI neural network chip does not exist today
but probably will exist within a year or two. If
done correctly, this would be ideal for our
simulations. But the state of the art in
reconfigurable simulators are supercomputers
and parallel processors. We have a very fast
simulator running on the SX-2 supercomputer
(200 times faster than our VAX 11/780
simulator), but supercomputer CPU time is
very costly.

For the purposes of our research,
several parallel processors were investigated
including the Connection Machine, the BBN
Butterfly, and the Ncube and Intel Hypercubes.
The best performance for our needs was
exhibited by the INMOS Transputer System.

Our previous neural network simulators
have been specific to one particular type of
algorithm and consequently would nat work for
other types of networks. With this simulator
our primary goal is to be able to implement all
types of networks. This will be more
complicated but is deemed well worth the
effort. When we are finished, it should be
possible to implement a different kind of
network in less than a day. The performance
reduction will be less than 10 percent for this
general-purpose capability.

Example networks

To have examples to work with, let us consider
two very typical neural networks. The first is
a three-layer feedforward network (fig. 1)
that is to be trained with the generalized delta
learning algorithm (also called back
propagation). Rumelhart et. al.[5] describe this
algorithm in detail. We will assume that every
node in one layer is connected to every node in
its adjacent layer. The network will be trained
with a number of /O pairs which are an
encoding of the associations to be learned.
The sequence of events to the algorithm can be
described as follows. First, an input vector is
placed into the input nodes. The weight values
of the connections between the input layer and
hidden layer are then multiplied by the output
value of the corresponding input nodes and the
result is propagated forward to the hidden
layer. These products are collected and
summed at each node of the hidden layer. Once
all the nodes in the hidden layer have output
values, this process is repeated to propagate
signals from the hidden layer to the output
layer. When the output layer values are
computed, an error can be calculated by
comparing the output vector with the desired
output value of the I/O pair.

Hidden Layer

Figure 1. - Feedforward network.

With this error computed, the weights at each
connection between the hidden and the output
layer can be adjusted. Next, the error values
are backpropagated from the output layer to
the hidden layer. Finally, each weight can be
adjusted for the connections between the input
and hidden layers.

This entire sequence is repeated for
each successive /O pair. Note that this
algorithm has a sequence of events to it. Other
neural net algorithms do not; instead, every
node and connection updates itself
continuously[2,4]. Such algorithms can be
viewed as a sequence of length one.

Figure 2. - Hopfield net.

The second network to be considered is
the Hopfield network[1] shown in figure 2. It is
an auto-associative memory in which every
node is equivalent; i. e., they are all used as
inputs and outputs. Every node is connected to
every other node but is not connected to itself.
The connections are bidirectional and
symmetric which means that the weight on the
connection from node i to node j is the same as
the weight from node j to node i.

Other neural networks impose different
constraints. For example, the connection
scheme may be totally random, or it may be
that every ninth node should be connected. The
equations used are very often different. The
order of sequencing forward propagation, back
propagation, weight adjusting, loading inputs,
etc., also may be different. Stochastic
networks update their values probabilistically.
Yet some generalizations can be made for
almost all types of networks and these are
what we have used as the basis of our
simulator design.

The first generalization is that all
network computations are local computations.
In other words, the computations only involve
a node and the nodes to which it is connected.

112

This is a generally accepted principal in the
literature and some authors even use it in the
definition of a neural network.

The second generalization is that all
neural computations can be performed by
applying functions to the state variables of a
node and its neighbors. While this is a trivial
restatement of Turing equivalence, the
emphasis here is that this can be done in a
computationally efficient manner.

The third generalization is that any
computation performed by a node on its input
signals can be decomposed into parallel
computations that reduce multiple incoming
signals to a single signal. This single signal is
then sent to a node to be combined with single
signals sent from the other parallel
computations. This allows a node computation
to be broken apart, and the partial results
forwarded to the node which computes the
final result. For example, a computation that
is common to almost all networks is the dot
product which is a sum of products. This can
be decomposed into multiple sums of products
whose results are forwarded and summed.

Memory Utilization

For maximum memory efficiency, the target
design should have one memory cell of the
minimum possible size for each state variable
which the network must keep. These state
variables consist of the values kept for the
connections and nodes. For a connection in the
two networks above, one memory cell per
connection is needed since the only
information associated with a connection is
its weight. If the connectivity is like that of
the above two networks (where everything in
one layer in connected to everything in another
layer), the connection information can be
implicit. At the other extreme, where the
connectivity is totally random, a additional
pointer between nodes would have to be kept
for each connection.

For nodes, a network like the Hopfield
network only has to keep one variable: its
output value. The size of this output value,
however, can vary. Some networks work with
8-bit or 16-bit integers while others use
floating point numbers. Other kinds of
networks require additional state variables at

113

and connections. Almost all
networks include added representations to
ease debugging tasks. Because of these
differences in size, we have allowed the user
to specify node variables and their types by
defining structures in the C language to hold
the state variable information. This allows all
the flexibility of C (ie. integers, floats,
doubles, bytes, bit fields, etc.).

the nodes

CPU Utilization

Since previous simulations have shown that a
neural net simulator spends almost all of its
time processing connections (typically, there
are many more connections than there are
nodes), an examination of execution speed
must focus on the calculations done for each
connection. The operation common to almost
all neural nets is some function of the dot
product. This is

where O; is the output of the ith node, Oj is
the output of the jth node, W ;; the

J)
connecting weight, and f is some function
applied to the dot product (note that the time
spent executing the function f would be
relatively small in any sizable network since
there would be few nodes compared to the
number of connections). Notice that the above
computation can be thought of as a loop of
multiply-accumulate operations. For each
operation the computer must calculate two
addresses, fetch the two referenced variables,
multiply them together, and add that product
to a local register. If the addresses were
sequential, calculating a new address could be
done by incrementing a register. Otherwise, a
randomly connected network would require
that the computer fetch a pointer which would
be used as the address of Oj.

is

we could
and Oj could be

Without the extra pointer,
imagine that the weight, W,-j,

fetched in parallel from two separate
memories and pushed into a pipeline where
they would be multiplied and summed. Using
today's electronic components, memory
fetching would be the bottleneck with memory

access times of 100 nanoseconds (ns) per
fetch. Thus the execution rate of the
fetch-multiply-store loop above would be on
the order of 100 ns. If the weight and the
output could not be fetched in parallel, the
loop would take 200 ns. As a result the best
can be hoped for, even with a custom made
VLSI chip, is about 200 ns per cycle through
the loop. Of course, this can be done in parallel
with multiple chips. Said another way, this is
5 million connections per second per memory
bank. Since economic and time constraints
precluded the design of a VLS| chip, the best
commercially available hardware was sought.

Transputer Architecture
A transputer{3] is a 32-bit, 10 million-
instruction-per-second (MIPS), single-chip

microcomputer manufactured by INMOS, Great
Britain's leading semiconductor manufacturer.
Transputers are designed to be components in
large parallel processing systems and have
hardware multitasking for sub-microsecond
task switching times. Each transputer has four
10-Megabit per second, full dupiex serial links.
We purchased the INMOS transputer system
ITEM 4000, a 40 transputer parallel processor
with capabilities of 400 MIPS, 50 MFLOPS, and
10 Mbytes total local memory (256K per
processor). An additional transputer plugs into
an IBM personal computer (PC) advanced
terminal (AT) with 2 Mbytes of memory. This
transputer uses the PC AT as its I/O
subsystem. Yet another transputer controls a
512x512x8 graphics board. The development
system has both the C language and OCCAM, the
parallel processing language of the transputer.

Decomposition of the Matrix

There are several ways to divide the nodes and
connections of the network among the
processors. One scheme is to copy the node
variables to all processors. This makes
allocation simpler, but it can use a lot of
memory. We have chosen to decompose the
connection matrix (fig. 3) into partitions that
require only a subset of node variables.

114

Figure 3. - Connection matrix.

The connection matrix is formed by having one
row and one column for each node in the
network. Assume that each row of the matrix
represents a "from" node (the source of a
connecting link) and each column a "to" node.
For every connection, a mark is placed at the
intersection of its from and to nodes. Figure 3
shows this for a three-layer feedforward
network where all of the input nodes are
connected to all of the hidden nodes and all of
the hidden nodes are connected to all of the
output nodes. The nodes and connections are
then allocated to processors by sectioning the
covered areas of this matrix into the same
number of regions as processors. A processor
associated with a region must have access to
both the from nodes represented by the rows
of its region and to the to nodes represented
by the columns. When a node is unidirectionally
transmitting a signal from one node to
another, the state variables of the from node
are not the same as the state variables of the
to node (in a typical case, the from node must
have a variable for its output value but the to
node must have an accumulator for its dot
product). Therefore, the state variables are
separated into "exported values" and "partial
results," and only the necessary variables are
kept in a processor. Thus the memory
allocation for copies of node variables
required by a processor when receiving a
region is equal to the height of the region (in
number of nodes) times the number of bytes
for the from node "exported" state variables
plus the width of the region times the number
of bytes for the to node "partial result" state
variables. Let us assume that the number of
bytes for from nodes is F, the number for to
nodes is T, the number of nodes in the network
is N and the number of processors we have is
P . Let us next assume the matrix is fully
covered, and that we have some number of

processors that is a perfect square. If we
leave enough space for every node in a
processor the number of bytes allocated is (NF
+ NT)P . However, by partitioning the matrix,
the number of bytes allocated is (NF + NT)P
/NP (again, assuming square regions). This is
a factor of VP savings. When the allocations
are contiguous groups of nodes, node variable
structures can be stored in an array with
minimal overhead both in access time and
memory. Other schemes would necessitate
pointer or hash table overhead.

Load Balancing

A basic problem with most parallel processing
schemes is balancing the load evenly so that
all processors can be working most of the
time. If one processor is slower than the rest,
all of the other processors have to wait for it
to finish before they can all synchronize and
continue. Since the time of execution is
proportional to the number of connections that
a processor must process, our matrix
decomposition scheme solves this if equal
areas can be assigned to the processors. If the
matrix is fully covered, this is easy. But when
it is covered with many irregularly sized
areas, it is more difficult. We are developing a
heuristic method for doing this which we refer
to as our load balancing algorithm. Because
processes may be sequenced, as in the
generalized delta algorithm, it is necessary to
have a separate matrix for each asynchronous
phase group of connections. An asynchronous
phase group is defined as a set of connections
where all processing can be done in parallel. In
the generalized deita rule described above,
there are two phase groups: input to hidden and
hidden to output. The user specifies the phase
when he defines the group.

Mapping Macros

To get a system up and running in a reasonable
amount of time, the user is required to modify
a few sections of program and recompile the
source to create a network with his
specifications. This code modification method
offers total flexibility. The user specifies the
network by calling functions. He also must
specify the structures to hold the state

115

variables of nodes and connections. To specify
the equations to be applied, a "map-
connections" macro is provided which expands
to the actual code that goes in each of the
slave processors. This macro handles ali of the
addressing and hands the user pointers to the
connection variables and to its two adjacent
node variables. The code that he provides can
do whatever he wants to the state variables. It
can propagate a signal forward, backward, or
both ways. It couid initialize the weights. It
could save the weights to a file or recover
them. A similar "map-nodes" macro is also
provided. The macros create functions that are
called with an argument of the node group or
connection group to which the user wants the
function applied. This macro approach expands
to code that is 90 percent as run-time-
efficient as can be handcoded. To execute the
sequencing of the generalized delta rule the
user would call a predefined function that
loads the inputs. The user would then
broadcast a message to all processors that
would invoke his macro-defined function with
an argument of the input to hidden connection
group. This function executes in parallel in all
of the slave processors. It first checks to be
sure it has connections from the input to
hidden connection group; if not it just
responds "done" to the master. The user then
broadcasts to invoke his function that was
defined with "map nodes" to process the
hidden nodes. The same is done from the hidden
nodes to output nodes. Backpropagating is very
similar but the user invokes different
functions. He probably would name this routine
"train_one_input_output_pair" and call it
inside a loop to do all of his training.
Likewise, the user might define a function
called "output_of" that takes an input vector
as argument, propagates it through the
network, and returns an output vector. |f the
user used symbolic constants in his functions,
he would only have to change constants such
Number_of_input_nodes,

as
Number_of_hidden_nodes and
Number_of_output_nodes to change their

sizes. Even architectural changes can be made
with small changes in the program (such as
connecting all input nodes to all output nodes
as well). Although this approach allows the
total flexibility that many users want, others

will dislike tinkering with the code.
Ultimately, a much friendlier user interface
will be provided as well. We are considering
both a language and menu-driven graphics for
specification of the network.

Program Structure

The system architecture we are using is
master-slave. The master transputer in the
IBM PC acts as an interpreter of the commands
from the user interface. In turn, the master
issues commands to the slaves whose sole
task is to interpret commands from the
master. The slaves merely look the command
up in a table (index an array) and execute the
function associated with that command (whose
pointer is stored in the table). The argument to
the function is a pointer to the buffer that
holds the remainder of the command message
which contains the arguments to the function.

Synchronization

Synchronization of the master and slave
processes is accomplished by having the
slaves respond to every command. When the
master gets as many responses as there are
processors, he can continue.

Communication

Since processors are only connected in a point
to point fashion, a message between two
non-adjacent processors must be relayed by
intermediate processors. Our communications
process inside each processor continually
waits for a message to come in from any of
the four input ports and, when one comes in, it
reads the address in the message and looks in
a table (indexes an array) to determine the
appropriate output channel for retransmitting
the message (a channel is a logical port; it
may be a physical port or a location in
memory[3]). Buffering is used in each
processor to avoid deadlock and to smooth
irregularities in transmission rates.

Even though it reduces the total amount
of communication required, the method of
decomposing the matrix means that some
nodes are split across processors and that the
partial results accumulated at several of the

116

processors must be shipped to a central
location (for this node) to be combined. This
location is called the home processor of the
node. Each processor is home for a roughly
equal number of nodes that are in the same
asynchronous processing phase. When a
map_nodes function is called, it is applied in
the home processor of the node with the
variables which it contains. These are
referred to as the static variables of the node.
Since they do not have multiple copies, the
static variables use little memory.

So the bulk of the communications
results from processors sending partial
results to the home nodes and from home nodes
exporting these processed values to several
processors. Analyzing the time this will take
is very difficult, but there are two potentially
limiting factors that we can analyze
individually: the limit set by the serial links
and the limit set by the CPU cycles required to
buffer and relay messages. Surprisingly, the
CPU time is the limiting factor. The analysis
is as follows.

The number of processors that ship a
message home and that the home node ships to
can be seen by examining the sections of the
connection matrix after the areas have been
carved out. Let us assume that a fully covered
matrix has been evenly partitioned into 5 rows
by 8 columns and that each of the 40
processors gets 1 partition. From a home node
processor's point of view, five processors
must ship their partial results to the home
node processor and this processor must
combine these results and ship this new output
value to eight processors (let us assume the
home processor is not one of these). This
means that there are 14 messages shipped for
every node. It can be determined by
enumeration that the average distance
between processors in our array (fig. 4) is 3.5
links.

Slaves

Color Monitor

Graphics Transputer

To IBM PC —-——[j

Master

LH
Th

ﬂ}E}} CHCH
CHCHCHCHCHCHCHEHCHLY

CHCHCH
]

Figure 4. - Processor configuration

Each of these 14 messages must travel over
3.5 links, yielding 3.5 * (5 + 8) 46
transmissions per node. lf each message is 12
bytes (96 bits) long, this is 96 * 46 4416
bits transmitted per node. Since each serial
link is 10 million bits per second and there are
80 full duplex serial links in our network,
there are 2 * 80 * 10million 1600 million
transmitted bits per second possible (This
assumes that every bit slot is being used,
which is not likely; but if adequate buffering
is available and the CPU retransmit speed is
sufficiently fast, this is almost the case (> 50
percent of this)). Dividing this by 4416 bits
gives 362,318 nodes that could transmit each
second. This means that the serial-link is
limited to about 362,000 nodes per second.
This could become the limiting factor in
networks with large numbers of nodes and few
connections per node; but, typically, there will
only be a few thousand nodes in a network so
other things will probably limit throughput
before the serial links do.

To examine the CPU speed requirement,
remember that there are 46 transmissions per
node. For each of these, a processor must
receive the message, buffer it, determine the
port to which it should be sent, and then
retransmit it. The transputer direct memory
access (DMA) hardware handles the receiving
and transmitting concurrently. All the CPU
must do is copy the received message to a
buffer, determine where to send it, and later
copy it from the buffer. There are 46
transmissions per node, and a serial-link-
limited rate of 362,000 nodes per second is 46
* 362,000 16,652,000 transmissions per

117

second. When this is distributed over the 40
processors, each one must do 416,300
transmissions or one transmission every 2.4
microseconds (us). Yet summing instruction
execution times shows that the transputer
will actually take about 10 ps to retransmit
for a rate of 81,600 nodes per second. This is
about four times slower than the serial link
rate. So the speed of processing networks on
this system is still CPU limited.

It takes about 2 ps to fetch operands
and do a multiply accumulate on our 20 MHZ
transputer. This is what must be done at each

connection when propagating forward. Forty
transputers can process 20 million
connections per second. The time to propagate
an input forward to get an output from a
feedforward network can be estimated by
{(number_of_connections / 20 million) +
(number_of_nodes / 81,600) since these two
terms represent 90 percent of the processing
in typical networks.

The 2 us required for each fetch-
multiply-accumulate loop is about 10 times
slower than what would be possible with a

handcrafted VLSl chip but is significantly
faster than most other 32-bit
microprocessors. This, along with the

capability of packing several transputers in a
very small space, makes a transputer array a
very cost effective solution to neural network
simulation with off the shelf components.

Conclusion

We have discussed the constraints imposed by
neural networks on simulation. We have shown
what is achievable in terms of memory
efficiency and simulation speeds and have
compared our design to this. We have discussed
a technique for partitioning a neural network
to minimize memory waste on a parallel
machine. The program structure also was
discussed. The communication network was
analyzed to determine what the costs of
communication are. The resulting design gives
us a neural network simulator that has a
performance level nearly equivalent to the
highly optimized simulator we have running on
the SX-2 supercomputer for a cost equivalent
to 2 days of CPU time on that supercomputer.

References

1. Hopfield, J., "Neural Networks and
Physical Systems with Emergent
Collective Computational Capabilities”,
Proceedings of the National Academy of
Science, USA, Vol 79, April, 1982, pp.
2554-2558.

2. Hopfield, J., "Neurons with Graded
Response Have Collective Computational
Properties Like Those of Two-State
Neurons", Proceedings of the National
Academy of Science, USA, Vol 81, May,
1984, pp. 3088-3092.

3. INMOS Transputer Reference Manual
INMOS Ltd. 72-TRN-006-03, Bristol, UK
1987.

4. Grossberg, S. STUDIES OF MIND AND
BRAIN: NEURAL PRINCIPALS OF LEARNING,
PERCEPTION, DEVELOPMENT, COGNITION
AND MOTOR CONTROL, Reidel Press,
Boston, MA.

5. McClelland, J., and Rumelhart, D.,
PARALLEL DISTRIBUTED PROCESSING:
EXPLORATIONS IN THE MICROSTRUCTURE
OF COGNITION, MIT Press, Cambridge,
MA, 1986.

118

N88-17222

Interchange of Electronic Design Through VHDL and EIS

Richard M. Wallace
Computer Scientist
Air Force
Wright-Aeronautical Laboratories
Electronic Technology Division
Wright-Patterson, AFB, Ohio

Abstract

The need for both robust and unambiguous
electronic designs is a direct require-
ment of the astonishing growth in design
and manufacturing capability during re-
cent years (1,2}, In order to manage the
plethora of designs, and have the design
data both interchangeable and inter-
operable, the Very High Speed Integrated
Circuits (VHSIC) program is developing
two major standards for the electronic
design community. The VHSIC Hardware
Description Language (VHDL) is designed
to be the lingua franca for transmission
of design data between designers and
their environments. The Engineering
Information System (EIS) is designed to
ease the integration of data between di-
verse design automation systems. This
paper describes the rational for the
necessity of these two standards and how
they provide a synergistic expressive
capability across the macrocosm of de-
sign environments.

The Rational

The VHSIC Program has propelled forward
the design density of electronic systems
to a point where current computer aided

design tools, design representations,
and the corresponding data management
systems begin to 1limit the designers’

ability to
tinuum of

design throughout the con-
system levels to physical
levels. In order to provide mechanisms
for designers in the next decade, the
VHSIC program has several design automa-
tion efforts under-way in its Technical
Insertion and System Level Design tool
subprograms. The dual focus of these
subprograms is use of VHDL as the nota-
tion for design/description and the EIS
for integration of design data. 1Initia-
tion of the the VHDL proqgram was moti-

vated by the diversity of design nota-
tions that failed to encompass the broad
range of descriptive capability required

19

for advanced system documentation, and
by the need of the DoD to provide a
standard descriptive notation for sys-
tems that have life-spans upward of fif-
teen years. The VHSIC Hardware Descri-
ption Language provides an economical
method to decrease the system design
time and cost of government re-procured
ICs. Design costs for ICs are now in
the range of $2 to $5 million and devel-
opment costs must be reduced to meet fu-
ture needs. Maintaining and upgrading
electronic systems in inventory demands
specific, current, and rigorous descrip-
tions. As English can be vague, and
fraught with idiomatic contextual refer-
ences, the automation of design and de-
sign verification demands a technology
independent, rigorous notation as is
VHDL.

The EIS is envisioned to provide effic-
iency for the design process and to ease
the insertion of VHSIC technology into
electronic defense systems. To this end
the development of an integrated design,
documentation, and life-cycle mainten-
ance system for complex electronic sys-
tems must support initial specification
design data capture to fabrication and
testing data in one continuum. An EIS
system is not, and would not, be avail-
able from the commercial sector due to
the high cost of development for a
"turn-key" system being beyond most bus-
inesses. Therefore design automation
tool wusers are forced to integrate an
assortment of design tools from other
vendors and those that are developed
internally. The wunigque, proprietary,
and internal design representations of
each vendors’ design automation tool
complicates the integration task dras-
tically. Integration has been a sever
problem {3,4) while integration is known
to be beneficial {5,6]); thus the EIS has
as its main goal the reduction of the
present difficulties involved with in-
tgration of different vendors’ design
tools by developing a set of inter-oper-

ability standards
them. The VHDL
in the EIS system

and then demonstrating
in total is to be used
as the design documen-

tation formalism required of complex
electronic systems.
VHDL -- The Lingua Franca

A standard hardware description language
benefits all industries that depend on
electronics. By its use the problem of
a second source can be greatly reduced.

But how 1is this accomplished? What
makes the VHDL such a beneficial nota-
tion for electronic design? From the
inception of a standard hardware desc-
ription language ([7] the focus of the
language was to allow a hierarchical
continuum of design notation from the
system to gate level. A discussion of

the language hierarchy must begin at its
basic building block, the design entity;
and then progress through its other fea-
tures to show the capability of the lan-
guage for electronic design and the the
transfer of that design from designer to
designer,

The design entity 1is the
hardware abstraction in VHDL. A design
entity provides the separation of
interface and function to allow a
hierarchical design decomposition. The
crux of the design entity is the
interface which allows the entity to be
combined with other components. The
interface is the abstraction’s "pin-out"”
that describes the data paths and other
factors that need to be known by
component wusers. The secondary part to
a design entity 1is its body which
describes the organization and/or
operation of a component. As an
abstraction, the entity interface may
possess multiple bodies, each
representing a different implementation
or emphasizing a different view of
design. A design entity models
electronics of any intricacy. Examples
would be a 1logic gate, a flip-flop, a
control wunit, or a computer system. 1In
fact, the range is only limited by the
imagination of the designer as design
entities can be wused to describe any
physical object having a bounded
identity.

principal

The design entity interface contains in-
formation that is common to the bodies
that use the entity interface. This in-
formation 1includes data that is visible
and 1is not visible externally. Of the
visible data there are two types ports
and generics. The non-visible informa-
tion may define types, constants, and
attributes that are used by the alter-
nate bodies of the entity. 1Inclusive of

120

the object information,
can contain assertions
operating properties and operational
circumstances of the entity. Operating
properties specify desired timing or fu-
nctional relationships demonstrated by
the entity. Operating circumstances
specify external conditions that must be
stated in order for the entity to cor-
rectly model its component.

the interface
that specify

To define
design
the

communication channels among
entities and the outside world,
port data describes the mode and
type of that information. To pass data
that is not part of an entity’s port
interface, but is important to the oper-
ating circumstances, the design entity
interface may have generics. For examp -
le, a generic value would be passed to
the entity to specify a particular tech-
nology that the design entity is repre-
senting. Generics may represent instan-
tiations of preconditions for execution.

Given the interface of a design entity,
the designer provides a body that will

describe the function of the entity. 1In
VHDL there are two major divisions of
entity bodies; the architectural body
that expresses the data transformations
that occur within the entity and the
configuration body that controls the
choice of design entities that are used
to model sub-components and the distri-
bution of signal definitions.

In an architectural body the description
styles that designers use roughly fall
into three categories: structural, data-

-flow, and behavioral. As is implied,
structural description is approximately
equivalent to the schematic connection

of electronic components. The data-flow
description method consists of register
transfer level data transforms. The be-

havioral method of description allows
the designer to specify transforms in
wholly algorithmic terms. Any given
architectural body may use these three
general forms of description inter-
changeably.

With the capability of developing a li-

brary of similar component designs, it
is desirable to make use of existing en-
tities even if names or ports are not
exactly what are required, but a subset
interface will suffice. Additionally, a
design series can have multiple config-
urations, each using slightly different
design entities to implement the given
component's behavior. The configuration
body, which <contains the configuraton
specification, provides the ability to
respecify the default association rules
so that an architectural body’s compo-

nents may be bound to corresponding but
not identical design entities. The
architectural bodies must preceed the
configuration bodies which use them. 1In
this way a confiquration body can add or
modify the enity configuration post-de-
sign without altering its basic archi-
tecture.

With the basic structural elements of
the VHDL identified, the data of such a
block structured language must follow in
rigor, and scope. The VHDL is a strong-
ly typed 1language based on the syntax
and semantics of Ada. With this being
known, the VHDL supports descriptions of
objects from the typical bit values of
0’ and "1’ to higher levels of abstrac-
tion such as "integer," "message pack-
et," and "instruction." With the range
of data that can be described, VHDL
avoids the pit-fall of predefining data
types available to the designer. This
gives the designer the ability to com-
pletely describe new data types as they
are needed. The set of types available
to the designer include predefined types
such as BIT, BOOLEAN, REAL, INTEGER,
CHARACTER, and TIME. Additionally all
scalar and composite types are allowed.
These types would include enumeration
types, physical types (allowing expres-
sion measurement defined in a base
unit), records, and multidimensional
arrays. VHDL has the ability to create
functions and procedures and place these
in packages to enable the designer to
encapsulate algorithmic behavior.

of

most salient features of VHDL
application to artificial
are the ability to create
attributes to objects and
assertions that have
a design entity. As
emerge for design and
construction of electronic «circuits,
VHDL provides an attribute mechanism
that allows designers to associate extra

The two
for future
intelligence
and attach
have liturgical

global scope for
new technologies

information with descriptions of
components or parts of components. As
attributes can be referenced in VHDL

this allows entities and data-objects to
have LISP-like atom properties. This
capability is wuseful in intelligent
silicon compilation [8,9,10}. 1In order
to produce designs that are both eff-
icient, and more importantly correct,
the VHDL has the assertion ability req-
uired in many verification systems [11].
Assertion statements check static or
dynamic conditions that are either
checked prior to simulation or during
simulation as signal values change.
Assertions may occur at any point in a
VHDL description and are user control-
lable in order to report the condition
of the entity.

121

EIS -- The Pax Romana

In 1984 the disparity due to the diver-
sity of design formats and languages
prompted outcries from industry where
the future was seen as,

"A nightmare of incompatible
formats and a babel of diff-
erent languages."[12]

The
it

rhetorical question would be, "Has
gotten any better since 19842" From
the surveys of design systems available
in the trade press, the answer is no;
2lthough efforts by 1IC designers and
fabricators have produced draft inter-
change formats (e.g. EDIF). 1In order to
couple the large amount of distributed
database designs many individual trans-
lators have been written. Such one-on-
one translation does not provide the in-
tegration necessary for automated design
and fabrication. Without data integra-
tion, no amount of automation will over-
come the data interchange problem.

A series of workshops were held to form
& base-line for what would constitute

the requirements for an EIS. More than
150 people representing near as many
organizations attended the workshops.
The result was the creation of the DoD

Requirements for Engineering Informat-
ion Systems [13]. Five key areas for an
EIS were identified by the participants.
An EIS must support:

. the reuse of design information
from all forms of input,
. an information repository and
data caputre designed for a multi-
base, heterogeneous environment,

an interface to its information
model such that it economically
supports integration of existing CAE
software,
. a system that is not monolithic

in use so that installations may
tailor the system for current and
future needs, and

the efficiency to support the
above functionality in its opera-
tion.

The architecture of the EIS is rooted in
its information model; which when used,
provides a Pax Romana (enforced peace)
on the «conflict of data representation
and data usage. This Information Model
is the focus of the EIS effort that will
allow the identified key area to be
achieved. The requirements are that,

"The EIS
of the

information
accurately describe

must provide a model
classes of engineering
that are needed to
the sem-

antics of the information in
the engineering environment in
which the EIS operates. The
EIS Engineering Information

Model (EIM) need not be used to
actually represent engineering
data; this is the purpose of
the common exchange format.
Rather, it must provide a def-
inition of all information
classes and modeling rules
needed as the basis for formu-
lating a conceptual framework

for information exhange."[14]

It is this semantic description of engi-
neering information that provides the
knowledge-based technology that disting-
uishes the EIS effort from other data-
dictionary based, multi-view databases.
It is the goal of the EIM to have the
specification of semantics in a precise
and wunderstandable form. The informa-
tion classes and prescribed modeling
rules will ensure that the allowable
combinations of the data can be modeled
in exactly one way; the are no redundant

EIM models of the same data within the
system,
A goal of the EIS 1is to develop an

accepted Common Exchange Format (CEF) in
order to promote the exchange of data
between design systems, repositories and
organizations. From the experience
gained in the development of the VHDL,
the important factor in data exchange is
the information model. Once the model
is developed, the development of the ex-
change format 1is one of representation
notation design. The Object-Oriented
Data Language will be used in the EIS
for defining the syntax for manipulating
objects maintaired within an EIS. The
PROBE Data Model, an object-oriented ex-
tension of DAPLE¥X, developed by Computer
Corporation of America. DAPLEX is a
semantic data model and gquery language
that will provide the necessary features
for an object-oriented information mod-
el; such as

. the concept of an entity or ob-
ject that has existence independent
of its properties or relationships,
support for relationships between
objects and for set-valued proper-
ties, and
. types and generalization hier-
archies with inheritance.
For access to repositories through the
EIS the Object-Oriented Data Language
will be wused as the CEF between EIS
installations. In addition, data ex-
change adapters will be used to trans-
port design data via VHDL and EDIF. Al-

122

ternate exchange formats, such as a sub-
stantial portion of SQL will be used for
non-EIS installations as the program de-
velops thus allowing an interface to
foreign information models,

The Object Manager of the EIS is the
responsible "agent" for managing objects
and functions. It registers new ob-
jects, deletes objects that are unneed-
ed, locates and retrieves objects, and
provides access to objects. The Object
Manager provides services for resolving
object references in bindings with
application to 1) persistent and
temporary objects (data and events), 2)
stored and derived objects (database and
computed), and 3) passive and active ob-
jects (data and processes). Implementa-
tion of the Object Manager is based on
the design and facilities of the ENCORE
system by Brown University.

With the EIS Information Model key-stone
set within the EIS, the representation
of data is best controlled through
rule-processing and control-point
activation of data management functions.
The short-term requirements for
rule-based processing of EIM data are
that,

"Rule
ported

processing must be sup-
by programs that imple-
ment all required management
and control and other rule-
based capabilities. There must
be an interface specification
for every situation in which
rule processing is necessary
that allows programs to invoke
appropriate rule processing
programs and pass parameters to
them. Rule processing may be
implemented via object programs
in the short term...." "“The
EIS must be able to invoke the
rule processing services in a
heterogeneous, distributed en-
vironment. The services must
fulfill tool availability req-
uirements..."[15]

In the extended short-term requirements,
the general rule-based system which
allowed object programs to have static
knowledge-bases is modified so that,

"All
required by
provided by
which can
programs
fied"

rule-based capabilities
the EIS must be
a rule processor,

invoked through
that wuse the speci-
[note: CAIS] "standard
interfaces. The rule processor
must support the execution of
rules specified by a rule spec-

be

ification 1language. The EIS
must support facilities for
adding, deleting, and modifying
rules. The rule specification
language must support the con-
cept of system supplied variab-
les..." "and must support eval-
vation of expressions, condi-
tion testing and the triggering
of actions. The rule speci-
fication 1language must allow
for the specification of ac-
tions, including sending mess-
ages, changing global and ob-
ject-related management and
control information, and invok-
ing programs. The rule speci-
fication language must support
the concept of variables and
parameters. The rule specifi-
cation language must permit use
of any type of object as a var-
iable or parameter and must al-
low for the specification of
parameterized queries contain-

ing wupdate operations against
EIS-managed data. The EIS, in
combination with the rule pro-

cessor, must be able to support
the concept of parameterized
messages and programs, and must
be able to supply the parameter
instantiations automatically."
(16]

Thus the EIS Information Model is based
on processing information using a multi-
rule knowledge base in a multi-base en-
vironment. From this foundation the ex-
change of information among diverse en-
vironments is no longer a matter of for-

mat, but is one of semantics.

Summary

This paper has covered the descriptive
capability and control mechanisms of
the VHDL and the Information Model
structure of the EIS. It is the purpose
of both of these standards efforts to
promote the interchange of electronic

design data through the semantic content
of the data rather than in its physical-
/logical format. It is the intent that
both of these "tools," a language and an
environment, will be platforms from which
knowledge based electronics design may
continue forward. Internal to the VHDL
there exist the necessary control struc-
tures and proof mechanisms for the lan-
guage to be the input to a formal proof
of correctness system as done by Dr.
Luckham at Stanford University. As has
been described above, the EIS Informa-
tion Model is to be based on known know-
ledge-base requirements and techniques.

123

References.
1. Cammarata, Stephanie and Melkanoff,
M., "An Interactive Data Dictionary Fac-

ility for CAD/CAM Data Bases," Expert
Database Systems, Benjamin/Cummings Pub-
lishing Co., Menlo Park, CA, 1986, pp.
423-440.

2. King, Roger,
System Based
Model," 1bid pp.

"A Database Management
on an Object-Oriented
443-468.

3. Katz, Randal, "Managing the Chip
Design Database," IEEE Computer
Magazine, Vol.16, No.l2, December 1983,

4, Kalay, Y., "A Dbatabase Management
Approach to CAD/CAM Systems Integra-
tion," Proceedings 22nd ACM/IEEE Design
Automation Conference, June 1985.

5. Brown, H., C.
"Palladio: An Exploratory Environment
for Circuit Design," IEEE Computer
Magazine, Vol.16, No.l12, December 1983.

Tong, Foyster, G.,

6. Elias, N., Byrne, R., et.al., "The
ITT VLSI Design System: CAD Integration
in a Multinational Environment," Pro-

ceedings 22nd ACM/IEEE Design Automation
Conference, June 1985.

7. Preston, G., "Report of IDA Summer
Study on Hardware Description Language,"
HQ 81-23681, Institute for Defense Anal-

yses Science and Technology Division,
Arlington, VA, October, 1981.
8. Johannsen, D., McElvain, K.,

Tsubota, K., "Intelligent Compilation,"”
VLSI Systems Design, April 1987.

9. Janac,
R., "A
System,"”
1987.

George, Carlos, G.,
Knowledge-Based GaAs
VLSI Systems Design,

Davis,
Design
April

10. Goering, Richard, "Intelligent
Silicon Compiler Optimizes ASIC Design,"
Computer Design, April, 15, 1987.

11. Kemmerer, Richard,
Assessment Study
C3-CRO1-86, Office
Development National
Center, March 27, 1986.

"Verification
Final Report,"
of Research and
Computer Security

12. Patton, C. "Languages and Data
Formats Vie As Potential Standards in
the CAE Design Loop," Electronic Design,
Vol.32, No.26, December 27, 1984.

13. Linn, Joseph, Winner, R. editors,
"The Department of Defense Requirements
for Engineering Information Systems,"
P-1953, 1Institute for Defense Analyses,
Alexandria, VA, July, 1986.

14. 1bid paragraph 3.24.

15. 1bid paragraph 3.10.

16. 1bid paragraph 4.10.

124

N88-17223

DEVELOPMENT OF A COUPLED EXPERT SYSTEM FOR THE SPACECRAFT
ATTITUDE CONTROL PROBLEM

K. Kawamura, G. Beale, J. Schaffer, B.-J. Hsieh, S. Padalkar
and J. Rodriguez-Moscoso
Center for Intelligent Systems
Vanderbilt University
Nashville, TN 37235

F. Vinz and K.

Fernandez

National Aeronautics and Space Administration

Huntsville,

Abstract
A majority of the current expert
systems focus on the symbolic-oriented
logic and inference mechanisms of

artificial intelligence (AI). Common rule-
based systems employ empirical
associations and are not well suited to
deal with problems often arising in
engineering. This paper describes a
prototype expert system which combines
both symbolic and numeric computing. The
expert system's configuration is described
and its application to a space craft
attitude control problem is presented.

Introduction

Current NASA planning to develop a
low earth-orbit Space Station poses a
unique opportunity for the development of
an expert system for coupling symbolic
processing and numerical computations.

Computer simulations are used
extensively by NASA to verify systen
design. These simulations are developed by
highly skilled simulation specialists and
the complexity of these simulations
require that the specialist be involved in
the operational phase as well as in
development. This results in a poor
utilization of personnel. An expert system
coupling symbolic processing and numerical
computations may solve this problem by
permitting detailed experiments and
studies to be performed without the
investigator's need to have a detailed
knowledge of the model implementation.

Development of the Space Station will
also require <close coordination among
system designers from NASA, the aerospace
industry and other participants. An
intelligent system with enough knowledge
of system design may be able to assist in
this coordination. Such a system could
interact with each system designer in an
intelligent way, allowing for the
exploration of alternative designs,

125

Alabama 35812

pointing out potential problems, catching
forgotten details, etc. (De Jong (1983)).
This system could also inform the other

members of the design team of critical
decisions made.

Most current expert systems focus on
symbolic reasoning and inference
mechanisms and traditionally have not been
concerned with the numerical processes
trequently used on engineering problems
(e.g., the simulation of dynamic systems)
(Kawamura (1985a)). However, the

intelligent use of these numerical methods
involves the kinds of expertise with which
Al has dealt, and which is frequently in
short supply.

Recognizing such a need, NASA's
George C. Marshall Space Flight Center
awarded a contract to the Vanderbilt

University Center for Intelligent Systems
to develop an expert system to run a class
of spacecraft simulation programs. This
contract had the following long-range
objectives:

1.) To create an expert system that
can assist the user in running a variety
of simulation programs employed in the
development of the Space Station.

2.) To create an expert system that
understands the usage of a NASA-supplied
simulation and that can assist the user in
the operation of various features of this
simulation.

As an initial step toward development
of such an intelligent system, an expert
system called NESS (NASA Expert Simulation
System) was developed, which understands
the wusage of a «class of spacecraft
attitude control simulation software and

can assist the wuser in running the
software. NESS was build using a
knowledge-engineering tool called GENIE
(GENeric Inference Engine) (Sandell
(1984)), developed at Vanderbilt
University. The simulation software

represents a simplified model of a typical

spacecraft. It has many of the same
functions which appear in the simulation
software of an actual spacecraft. The

purpose of the generic simulation model is
to serve as a test-bed simulation during
the development of NESS. Since it was
developed at Vanderbilt, the generic
simulation model is well understood and is
easily modified. Its use made the
understanding of how to interface expert
systems to simulation programs much easier
than if an actual simulation program had
been used.

COUPLED EXPERT SYSTEM

Design Principle

One of the major design decisions of

this project was to maintain a clear
separation between the generic simulation
model, which performs the numeric

computations, and the expert system, which

performs symbolic processing. This
parallels the situation in which a human
expert sets out to perform a numerical

simulation experiment. The human expert,
using his or her knowledge of the system
to be modeled and the characteristics of
the simulation software, makes decisions
about how to run the experiment. These
decisions are then frequently implemented
by creating an input file to be read by
the general purpose simulation software.
This file contains parameters describing
the simulation model and switches which
inform the program of the options selected
by the wuser. The wuser then issues a
command to the operating system to run the
simulation program. If it vuns without
error, the user then examines the output
files and interprets the results.

Following this approach, the expert
system (NESS) was designed as a software

system separate from the generic
simulation model. Figure 1 shows the
interaction of these two systems
schematically. Each system was written in
the language most natural to 1it. The
generic simulation model was written in
FORTRAN following years of traditional

engineering practice, and NESS was build
using a general inference engine (GENIE)
written in FRANZ LISP, following current
Al practice.

The knowledge-base of NESS contains

three types of knowledge: general
knowledge about spacecraft attitude
control simulation experiments; specific
knowledge of the input parameters and
their formats required by the generic
simulation program; and self-knowledge

which is used to prevent foolish behavior,
such as attempting to examine results
before a simulation run has been executed.

126

The user-interaction scenario is
envisioned as follows. The users invokes
NESS which queries him or her about the
system to be modeled and the experiment to
be performed. This interaction should
avoid requiring the user to specify all
the 1low-level parameters. Rather, it
should concentrate on the major
engineering decisions required to get an
answer to your questions. The setting of
the low-level parameters should be
inferred and performed by NESS, using its

knowledge. After gaining sufficient
information to specify a complete
experiment, NESS runs the simulation and
checks for run-time error messages from

the operating system.

NESS should then examines the output
files created by the simulation model and
intecrpret them for the user in light of
his or her major questions. This involves
exhibiting plots of model responses and
comments on the stability of the proposed
system design.

System Architecture

NESS was designed using frames,
agendas, menu-inputs and rule-bases, all
of which ar facilities provided by GENIE.
Frames are one of the basic data
structures currently used in AI. Agendas
provide the control information necessary
for running an expert system. A menu-input
stage is used to gather information from
the user. Rule-bases containing individual
rules store knowledge obtained from a
domain expert. The architecture of NESS is
illustrated in Figure 2.

As can be seen from Figure 2, NESS
consists of five specific functional
modules controlled by a top-level Manager.

The Model Instantiator obtains initial
parameter values from the |user, the
Simulation Executor runs the simulation
model, the Librarian stores and retrieves

parameter values from disk files, the
Parameter Editor allows the user to edit
parameter values, and the Graphics module
displays the simulation results. The top-
level Manager controls the firing of each
of the five modules by means of a forward-
chained rule-base. This architecture along

with the rule-base control results in a
modular, flexible and expandable expert
system.

System Implementation

FRANZ LISP provides a number of ways
in which a LISP process such as NESS can
effect operating system calls. These calls
allow NESS to do things like write a disk

file containing the parameters that the
simulation program needs, cause its
execution and read the output files it

creates (as illustrated in Figure 1).

ORIGINAL PAGE IS
OF POOR QUALITY

The most straightforward utilization
of a system call is simply to include a

FRANZ LISP function "exec" (Foderaro
(1983)) to cause the execution of a
standard UNIX commands, directly in a rule
clause, For example,
output_display rb_ruleb checks the
precondition that insures that the
simulation program has run (self
knowledge) and that the user wants to see
a plot of theta, which the simulation

disk
' then'

program would have deposited in a
file called "thetaOplt.stp." The
side of the rule looks as follows:

(Sthen (exec cat thetalplt.stp)).
command to

named
user's

This causes the UNIX "cat"
execute, which simply copies the
file (thetaOplt.stp) to the
terminal.

A slightly more involved method is to

write a demon (i.e., a special purpose
LISP function) to perform some specific
operation which may involve one or more
calls to UNIX system* functions. For
example, a Jemon named
"setup_init wval in simula.inp™ calls the
system function "fileopen," "close," and
"cprintf," which performs formatted file

write operations. This demon is called by

run_rb_rulel.

This rule also calls the demon
"start sim," which wuses the FRANZ LISP
function "process” to fork a child
process, which is the actual execution of
the simulation.

NESS and the generic
reside on a VAX 11/785
VMS/EUNICE operating

Currently
simulation model
running under the
system.

GENERIC SIMULATION MODEL

Spacecraft Attitude Control Problem

The function of a spacecraft attitude
control system is to maneuver a space
vehicle into a certain orientation defined
by a reference vector, and to maintain
that orientation over an extended period
of time. As an example of attitude
control, consider the pointing control
system for the Space Telescope (Dougherty
(1982)). The control system must maneuver
the telescope through a 90 degree arc in
less than 20 minutes, and then maintain a
stable line-of-site to within 0.007 arc-
seconds for 24 hours. Thus, the control
system must be designed to maneuver
through a large change in direction and
then track the vehicles's position about a
constant direction. The vehicle's dynamics
could be represented by nonlinear

127

differential equation during the
maneuvering mode; in the tracking mode,
the equation could bhe linearized about the
desired operating point. In the initial
phase of our project, only the simulation
of the vehicle and control system during
the tracking mode was considered.

The commanded inputs to the control
system would generally be angular
position. Both angular position and
angular rate would be measured by star
trackers and rate gyros, and these
measurements would be available to the
control system. The torque required to
accomplish the maneuvers would be provided
by a set of control moment gyros (CMGs).
Generally, redundancy in sensors and
actuators could be a design feature of the
control system. For example, four sensors

could be positioned to measure the
variable in three-dimensional space such
that any three of the sensors would

provide linearly independent measurement.
With this type of configuration, all four
sensors could be used and consistency
checks made on the measurements. If any
one sensor failed, the remaining three
could provide complete coverage of the

desired variable. Figure 3. is a
simplified 1illustration of the pointing
control system for the Space Telescope.

The controller, reaction wheel assemblies,
and rate and position sensors mentioned
above can easily be 1identified in the
figure. The Fine Guidance Sensor block is
used in different ways for the different
modes of searching for a new targer,
course tracking of the target, and finally
maintaining an attitude locked onto the
target.

One factor which makes the control of
a space vehicle more involved than the
traditional position control problem is
the need to use several coordinate frames
in defining the vehicles's Llocation and
orientation. It is common practice for the
vehicles's attitude to be specified by a
series of transformations from an inertial
frame to frames that are geocentric,
defined in the orbital plane, and
dependent on orbital shape. In addition,
the wvehicle's orientation is defined
relative to a local vertical frame defined
at the wvehicle's center of mass and
oriented with respect to the orbit normal
and local wvertical directions. Other
reference frames are defined fixed within
the vehicle at the location of sensors,

actuators and bending modes ; these
internal frames relate sensor data,
generalized forces, and bending
deformations, respectively, to the

vehicle's dynamic equations.

Transformations are possible between
those wvarious coordinate frames (Brady
(1982) and Paul (1981)). A matrix can be

defined which can multiply a vector in one
coordinate frame to convert it into the
equivalent vector in a second coordinate
trame. Transformation matrices can be
defined in terms of roll-pitch-yaw angles
between the coordinate frames or in terms

applied to spacecraft attitude control
problems through the concept of
Quaternions (Ickes (1970) and Grubin

(1970)). A Quaternion is a four parameter
system composed of a wvector about which
the rotation is to be made and a scalar
which is a measure of the angle of
rotation.

Model Overview

The generic simulation model shown in
Figure 4 represents the simulation of the
spacecraft and contrel system during the
tracking mode.

A simple spacecraft attitude control
system would have a minimum number of
three (3) coordinate frames. These
coordinate frames would represent the
inertial coordinate system, the actual
vehicle orientation, and the target
reference direction. Zero position error
is achieved when the reference and vehicle
coordinate frames are identical to each
other. These three frames are used in the
generic simulation for this research
project. The function of the attitude
control spacecraft wuntil 1its coordinate
frame becomes identical to the reverence
coordinate frame, and then to maintain
that orientation until new reference
direction commands are given. The
Jdifferences between actual and commanded
angular positions and actual and commanded
angular rates would be used by the control
system as the error signals wused to
compute command signals for the actuators.
These signals would command torque from
the actuators about, an axis defined by the
Quaternion Transformation to force the
Qrrors to zero. This amounts to
determining the transformation matrix
between the current vehicle orientation
and that of the reference vector, and
determining the control signals necessary
to physically implement that
transformation matrix.

Implementation Status

Currently we are running NESS with a
simplified simulation model, i.e., there
are no bending modes, the inertia matrix
is diagonal, and the controller is of the
PLD (proportional-integral-differential)
type. The input command is angular
attitude. Runge-Kutta and linear multistep
integration algorithms are available for
performing the numerical integration of
the equations of motion. The simplified
model (Prototype I) is shown in Figure 5.

128

SAMPLE SESSION WITH NESS

The
concerned with gathering
the simulation experiment. NESS asks the
user to provide initial values of some
parameters and obtains other by asking
questions from which it can infer them.
This is done in a systematic manner as
follows:

primary knowledge in NESS is
input data for

a) NESS gathers all the data required to
define the system to be simulated.

This includes getting values for the

inertial and controller matrices,
initializing the Quaternion module
and selecting a method of

integration.

b) NESS asks for the type of response to
be obtained from the system. A choice
of STEP or FREQUENCY response |is
offered.

c) NESS then completes the set of
parameters vrequired to run the

simulation experiment.

CONCLUSIONS AND FURTHER WORK

This paper has illustrated an expert
system that can assist the user in running

a class of spacecraft attitude control
simulations. Although the knowledge-base
and the simulation model are relatively

simple and limited, we have demonstrated
the coupling of symbolic processing and

numerical computation. That was the
purpose of Phase I of this research
(Kawamura (1985b)).

In the subsequent phase, the

capabilities of both the simulation model
and the expert system will be extended.
The simulation model will be extended to
include actuator and steering distribution
equations. Bending modes are being added
in the body dynamic equations since they
represented a significant concern to the
control system designer. The expert system

is being extended to assist the user in
running a wide variety of simulation
models. It will interpret the output data

to determine system characteristics such
as percent overshoot, settling time, gain
margin and phase margin. Ness will also be
extended to recommend a suitable series
compensator to be added to the simulation
model that 1s required to achieve the
desired frequency or time response e.g.,
achieve a specified overshoot or phase and
gain margins.

REFERENCES
(1]

De Jong, K., Intelligent Control:

(2]

(3]

[4]

(51

(6]

[7]

[8]

Al and Control Theory,
1983,
(1983)

Integrating
Proc. Trends and Applications
National Bureau of Standards
158-161

Kawamura, K., Coupling Symbolic and
Numerical Computations, Proc. 1985
IEEE International Conference on

Systems, Man and Cybernetics (1985a)
507-510.

Sandell, H., Bourne, J. and Shiavi,
R., GENIE: A Generic Inference Engine
for Medical Applications, Proc. Sixth

Annl, Conf. [EEE Engr. Med. Biol.
(1984) 66-69.

DeCeraro, J.K. (ed.), et al., The
FRANZ LISP Manual (University of
California, Berkely, 1983).
Dougherty, H., et al., Space
Telescope Pointing Control System,
Journal of Guidance, Control, and
Dynamics 5(4) (1982) 403-409.

Brady, M. (ed.), et al., Robo t
Motion: Planning and Control (MIT
Press, Cambridge, 1982).

Paul , R.P., Robot Manipulators:
Mathematics, Programming and Control
(MIT Press, 1981).

Ickes, B.P., A New Method for
Performing Digital Control System
Attitude Computation using

Quaternions, AIAA Journal 8(1) (1970)
13-17.

129

[9] Grubin, c., Derivation of the
Quaternion Scheme via the Euler Axis
and Angle, Journal of Spacecraft
7(10) (1970) 1261-1263.

[10] Kawamura, K., Beale, G., Schaffer,
J., Hsieh, B,-J., Padalkar, S., and

Rodriguez-Moscoso, J., Research on an
Expert System for Database Operation
of Simulation/Emulation Math Models,
NASA Phase 1 Final Report Vol. I and
IT Contract #NAS8-36285, Center for
Intelligent Systems, Vanderbilt
University. (August, 1985b).

NOTE:

This edited paper describing NESS
Phase 1 appears in its complete form as a
chapter in Coupling Symbolic and Numerical
Computing 1in Expert Systems edited by
Janusz Kowalik and published by the North-
Holland Company in 1986. Phase I1 of NESS
was completed in May of 1986, and it
resulted in the development of more
general interface specifications allowing
NESS to interact with a wider range of
digital simulations. Emphasis was also
placed on incorporating knowledge specific
to the design of series control systenm
compensation yielding a system that
assists the control system designer in
achieving desired system performance. The
results of Phase II are documented in the
Final Report to MSFC on Contract #NASS-
36285, Center for Intelligent Systems,
Vanderbilt University (May 1986).

SIMULATION
DESIGNER

create ORIGINAL PAGE IS
OE POOR QUALITY

SIMULATION
MODEL

Instantiate
)

Execute

Performance

Glossary
Read Specifications

NESS
(Expert Subsystem)

USER

Analysis
]

Compensator-
Display results recommendations

rigure 1 User Interaction with the Coupled Expert System

EXPERT SUBSYSTEM

Performance
Procedural Specifications
Knowledge
(Demons) USER
Analysis &
Compensator recom, '

~

display results

Simulation
Results

NUMERIC SUBSYSTEM

Figure 2 NESS Architecture

130

+ Reaction .
Whee! Torguet o . (7,u)| % og

Command P1D
Controller [+ Assembly

Commands —— Generator

Rate
Gyro
Assembly

RGA/FGS
Switch

Fine
Guidance
Sensor

Rate Command

Comparator

T

Figure 3 Simplified Attitude Control System

-]
actual ATTITUDE
SENSORS
CONTROLLER
0. O——=
-]
BODY
ACTUATORS DYNAMICS q [
+)
: RATOR|
8. O— t QUATERNION INTEGRATO
COMMAND
GENERATOR
RATE
SENSORS

8actual

Figure 4 Block Diagram of the Generic Simulation Model

ORIGINAL PAGE I§
131 OE POOR QUALITY,

VR Transformation

Oy

Q
(VR)
CONTROLLER
. Te BODY &y
8¢ O 3 Kp DYNAMICS
B¢ +
I
8¢ + q I ﬁ
X
Xp QUATERNION __l INTEGRATOR
COMMAND r
GENERATOR [@
8y (wy)

Figure 5 Simplified Diagram of the Generic Simulation Model

132

8y (wy)

N88-17224

USER INTERFACE DEVICES FOR MISSION CONTROL

Wayne Boatman

JSC/FS93

Johnson Space Center, Texas 77058

ABSTRACT

The Mission Control Center (MCC)
at Johnson Space Center (JSC) in
Houston, Texas is being upgraded with
new technology engineering/scientific
workstations. These workstations
will replace the existing consoles
and will emulate the present hardware
input and display media. The works-
tations will be using new and dif-
ferent input devices for the flight
controller to interact with the
workstation and mainframes. This pa-
per presents the results of the USER
INTERFACE survey conducted by the
Workstation Prototype Lab (WPL). The
WPL offered the opportunity for users
to do “"hands-on" evaluation of a
number of user interface options that
Lab personnel had prototyped.

INTRODUCTION

The System Development
Division’'s Workstation Prototype Lab
(WPL) demonstrated several interac-
tive computer input devlices to space
shuttle flight controllers. The in-
put devices +that were presented as
possible candidates for the future
Mission Control Center (MCC) included
the following:

a) Touch Screen - Comprised of
two sheets of plastic film
placed over the terminal display
whose inner sides are coated
with a resistive substance.

¥hen the screen is touched, an
analog signal corresponding to
that point 1s generated and sent
to the associated controller
box. The control box then con-
verts the analog signal to a di-
gital value which is used by the
host workstation to determine
which point on the screen was
touched. :

133

.keypads to manipulate a

b) Mouse -~ Used to control the
terminal screen’s cursor

The optical mouse is moved over
a special tablet to initiate
movement. The mechanical mouse
is similar to an "urside-down"
track ball and is moved on a
smooth surface to initiate cur-
sor movement. Once the cursor
has been moved +to the desired
screen position, a button or a
series of button would be
pressed to initiate a particular
function.

¢) Joystick - Used to control
the terminal screen’'s cursor.

The cursor is moved in the same
direction as the Jjoystick lever.
Once the cursor is placed on the
desired screen positlon, a but-
ton or a series of buttons would
be pressed to initiate a partic-
ular function.

d) Keyboard/Key Pad -
standard keyboard and

Uses the
special
cursor
position on a screen or to in-
voke a user selection.

This input device also includes

all function keys, directional
arrows, numeric keypads, etc.

e) Continuous Voice Recognition

System -~ Accepts a speech input
that is transmitted electroni-
cally to the voice recognition

system via microphone.

The system takes the analog
voice signal, digitizes the pat-
tern, and stores this pattern in
its memory. These sets of pat-
terns can be stored on small
floppy disks or on a host works-
tation. Then, each tine a

waveform is received be the sys-
tem, it performs a patiern match
to the digitized “vocabulary”
previously stored in memory. If
a good match is found the work
is said to be ‘"recognized" and
its predefined function is send
to the workstation to execute a
command. The voice system also
has the capability to playback
recorded messages and response
messages from the host computer.

USER INTERFACE SURVEY

To provide the benefit of
hands-on experience, a program vas
created which guided the users
through a series of demonstrations
designed to show how these devices
could be applied to practical prob-
lems facing future users of the next
generation MCC software. This pro-
gram provided the user with & means
of calling up various displays and
simulating the initiation of Orbiter
commands.

Over 150 people participated in
the original demonstrations and each
was asked to make inputs to a rela-
tional database with their rating on
each device as applied to a specific
application. Since the original
demo, another 400 people have seen
the workstation input devices. In
the table below, results from the
original evaluation is shown (see
Table I). Note that 9.0 is the
highest possible rating and 1.0 is
the lowest possible rating.

TABLE 1

Command Demo

CONCLUSIONS

The results from these
demonstrations shows that the
Mouse and Keypad were the pre-
ferred input devices for the
flight controllers. Additionally,.
there was & limited number of
votes for the +touch screen. It

was determined the mouse was very
good for grabbing and dragging = an

object on the screen. The mouse
will be used for moving and resiz-
ing windows and for building
displays with a graphics editor.

The keypad software is application
specific, but with compiler 1i-
braries provided by the worksta-
tion vendors, software with keypad
input can easily be written. The
touch screen input will be offered
only as an option to the MCC up-
grade program.

Display Demo

7.7 Touch Screen
5.4 Mouse
3.0 Joystick
4.7 Keypad
* Voice

* Voice Input was not applicable for the Command Demo

134

N8§8-17225

THE DESKTOP INTERFACE IN INTELLIGENT TUTORING SYSTEMS

Stephen Baudendistel

Grace Hua

COMPUTER SCIENCES CORPORATION
Applied Technology Division
16511 Space Center Blvd.
Houston, TX 77058
(713) 280-2430

Abstract

The interface between an Intelligent Tutoring System
(ITS) and the person being tutored is critical to the
success of the learning process. If the interface to the
ITS is confusing or non-supportive of the tutored
domain, the effectiveness of the instruction will be
diminished or lost entirely. Consequently, the interface
to an ITS should be highly integrated with the domain
to provide a robust and semantically rich learning
environment. In building an ITS for ZetaLISP on a
LISP Machine, a Desktop Interface was designed to
support a programming learning environment. Using
the bitmapped display, windows, and mouse, three
desktops were designed to support self-study and
tutoring of ZetaLISP. Through organization,
well-defined boundaries, and domain support facilities,
the desktops provide substantial flexibility and power
for the student and facilitate learning ZetalLISP
programming while screening the student from the
complex LISP Machine environment. The student can
concentrate on learning ZetaLISP programming and not
on how to operate the interface or a LISP Machine.

Introduction

Artificial Intelligence techniques are now beginning to
be applied to the area of education, in particular to the
development of Intelligent Computer Assisted
Instruction (ICAI). Frequently, the ICAI is in the form
of Intelligent Tutoring Systems. Figure 1 depicts a
typical ICAI architecture [9]. The area of the ITS most
frequently addressed to date has been the student
model. By contrast, the interface has been minimally
addressed. Yet the interface is the student's contact
with every component of the tutor. If the student
cannot get past the interface, the quality of the student
model or of any other component of the ITS will not

135

matter. Consequently, the interface must be a high
priority in the development of any ICAI [17].

STUDENT

INTERFACE

TEACHING
KNOWLEDGH

pemain
KNOWLEDGH

N

BUGGY'SH !

STUDENT
MODEL

IDERLI®

Figure 1. A typical Intelligent Computer Assisted
Instruction (ICAI) Architecture.

This paper will describe the implementation of an ICAI
interface, referred to as the Desktop Interface, for a
ZetaLISP Intelligent Tutoring Assistant (ZITA). To date
the ZITA student model has been only minimally
implemented, while the emphasis has been on
developing an interface which would support and
encourage learning to program in ZetaLISP on a LISP
Machine. In fact, the Desktop Interface is intended to
provide much more than a typical user interface; it is

to provide a Programming Learning Environment (PLE)
[19]. Moreover, the Desktop Interface is presented as
an authoring vehicle for developing programming
language tutors for languages in addition to ZetaLLISP.

In promoting the ITS interface, we are not advocating a
position of ignoring components of ICAI other than the
interface or of producing a glittering interface with no
underlying substance. Ideally, all the components
would be highly integrated. However, up to this point,
more attention has been devoted to the more

glamorous components: the Student Model and the
Domain Knowledge. We do not want the gains made in
these latter components diminished or lost because the
learning environment does not foster and facilitate
learning. Unpleasant experiences with frustrating,
difficult interfaces will not advance ICAI but rather
retard it. Our ideal tutoring environment is one which
seems invisible to the student but which supports the
intuitive operational expectations of the student
relative to the domain being tutored.

Background

In the past five years important advances in graphical
presentation capability have made possible a new,
powerful method of communication. Bitmapped,
graphical windows and the mouse have resulted in
proven techniques for reliable, high-bandwidth
information exchange between people and computers
[21] which more closely model human cognitive
processes, especially with the use of metaphor and
frames [5]. With these capabilities we can move far
beyond the limitations imposed by static CRT screens
with 25 lines of 80 characters. Previously such
capabilities have required expensive, multi-MIPS
computers. But the decreasing cost and increasing
power of microcomputers now make such capabilities
readily available for ICAIL. Indeed, we should demand
windows and mice, and refuse to consider systems
limited to complicated keystroke patterns and
displaying a few lines of text.

Criteria for Developing Tutoring Environments

While the tutoring environment must be designed with
the specific domain in mind, some general criteria for
developing tutoring environments have begun to
emerge [24]. Environments should be intuitive,
obvious and fun. The use of metaphor, icons, and the
mouse should take advantage of student intelligence,
experience and resourcefulness. Environments should
provide high-bandwidth communication between the
student and the tutor. Designers should be motivated
by teaching and cognitive knowledge about how
experts perform tasks in the subject domain.
Environments should isolate key tools for attaining
expertise in the domain. Environments should

136

maintain fidelity with the real world (in learning
programming, the student should be able to run both
examples and problem solutions). Environments
should be responsive, permissive, and consistent based
on skills students already have rather than forcing
them to learn new skills. Finally, all tools should be
based on similar interface devices such as menus,
mouse clicks, etc.

A ZetaLLISP Tutor

We currently have a task with the Artificial
Intelligence Section of the Mission Planning and
Analysis Division (MPAD) of NASA's Johnson Space
Center (JSC) to provide training in Al topics (Common
LISP, ZetaL ISP, LISP Machines, CLIPS, ART). The
Zetal ISP tutor has been developed on an
as-time-permits basis to complement our ZetaLISP
class. In designing the Zetal ISP tutor, two goals were
established. First, we wanted an effective environment
for tutoring ZetalLISP on a LISP Machine. Secondly, we
wanted to develop a general programming learning
environment for computer applications languages. In
particular, we wanted a PLE which could be duplicated
on workstations and the upcoming, more powerful
personal computers.

One must make a number of assumptions when
implementing a tutor. Ours were as follows: the
student would be a technical professional employed by
NASA or its contractors; the student would have the
equivalent of 40 hours of Common LISP training and 8
hours of hands-on training in the use of a LISP
Machine; the tutor would supplement our classroom
ZetaLISP training; the tutor could evolve to be used by
persons who had completed the ZetaL ISP training
(about 45 hours) and were interested in obtaining

more experience or were seeking examples to help in
their current tasks.

The coaching system of ZITA evaluates the student’s
performance through a differential modeling
technique, comparing the student’s progress to an ideal
solution step-by-step, intervening immediately when it
perceives the student has made a mistake [4], [18]. At
this stage of development, the immediate intervention
issued by the tutor primarily points out syntactic
errors and noise level errors made by the student
presumably due to negligence and fatigue. Based on
the previous assumption of the student’s background,
these errors are not considered to have resulted from
misconceptions in learning.

Learning to Program and the PLE

How could an appropriately structured environment
facilitate the acquisition of programming skills [16]?
In order to answer this question, we first investigated
some of the aspects of learning to program. Three
aspects of learning to program were to be supported
by-our PLE [1]. First, the PLE was to help the student
organize and compile problem-solving operators for
programming. Learning to program involves
recognizing appropriate goals and decomposing the
goals into subgoals until goals are reached which
correspond to code. Secondly, the PLE was to represent
the relevant knowledge, both declarative and
procedural, in ways which correspond to the cognitive
representations of programmers, because one's
representation of a problem has strong impact on one's
problem-solving ability. Thirdly, the PLE was to act as
an external memory device for programmers to reduce
the impact of human memory limitations.
Approximately 50 percent of LISP novices' time is
spent recovering from errors of memory [1]. By
reducing student working memory load, the PLE will
minimize student errors due to memory limitations.

Good programmers are made, not born [23]. B.S. Bloom
found that 98 percent of the students with private
tutors performed better than the average classroom
student. He also found that the greatest learning gains
were for the poorest students [2]. The average college
graduate is not prepared to perform professional
programming tasks without additional training when
he or she first arrives on the job in industry. Large
sums of money are spent training and retraining
programmers with widely varying results. We can
improve this process greatly by developing intelligent
tutors for learning programming which will provide
consistent, cognitively modeled [12] tutoring when and
where needed, and at significant cost savings.

The PLE of our ZetalLISP tutor addresses the three
aspects of learning programming described above in
four ways:

a) Learning by example [20], {10], [4];

b) Facilitating knowledge representation;

c¢) Reducing student working memory requirements;
d) Unleashing the power of the computer on the ICAI
interface.

The PLE is based on learning by example. Examples
are critical to learning and to the structure of
knowledge and memory. Learning by example

137

provides the student with early, positive experiences
and lays down a solid foundation on which to build.
Examples help the student organize and compile the
use of appropriate operators for programming.
Examples illustrate goals and subgoals appropriate to a
particular language but which may not transfer to or
from other languages. Techniques recalled from
examples help reduce the number of steps to produce a
solution in similar problems. Novices use examples to
generalize solutions, set limits to those generalizations,
make recipes for standard tasks, and as a basis for
retrieval and modification approach to generating
other examples.

Adult students only acquire effective use of
problem-solving knowledge by practicing with a series
of examples and problems [19]. Adults prefer learning
by doing rather than watching because it makes the
subject immediately useful and meaningful [22].
Studies by the Xerox Corporation confirm that learning
occurs 50 percent faster with active, hands-on training
than when the learning is passive [13]. Adult learners
seek a focused, applicable treatment of the subject so
they can transfer the concept to their work.
Generalities are acceptable only when they lead to
specific information and ideas. Adults are highly
motivated to apply their learning to their work and are
willing to assume responsibility for learning. Adult
learning uses experience as a resource. Adults feel
rewarded when the learning enriches their experience.
Material that provides options is more appealing to
adults than material that locks in one approach.
Examples reinforce and strengthen the link between
the concept and application transfer, rewarding the
learning experience and disposing the student toward
further knowledge.

The PLE facilitates programming knowledge
representation as used by the expert. Not only is
syntactic knowledge represented, but more
importantly, much implicit semantic knowledge,
acquired over many years of experience, is presented
to the student. Techniques illustrating when, what,
and how to extend specific knowledge in the examples
to solve new problems (extrapolate) [15] must be
taught. Human learning occurs as a search in a
problem space [12] and the desktop interface of the
PLE helps constrain and focus the search. Each
learning state and operators are well defined for each
desktop in the PLE. Chunking is well suited to learning
because it is a recorder of goal-based experience; it
caches the processing of a subgoal in such a way that a
chunk can substitute for the normal, possibly complex,

processing of the subgoal the next time the same or a
similar subgoal is generated [11]. Each exercise is a
chunking process of storing both knowledge and links
to appropriate, related knowledge.

Memory load is minimized by the PLE. Each desktop of
the PLE organizes information by chunking into easily
recognized areas, minimizing student memory
requirements. Each desktop is self-contained; the
information necessary to perform required actions on
the desktop is present in a window. Transitions from
one desktop to another are accomplished with a simple
mouse click on a clearly marked box. By using direct
manipulation techniques with the mouse and menus,
options are clearly delineated and selected in obvious,
foolproof ways. Examples and problems help clearly
separate details from general principles and establish
limitations when extending operators. Finally, each
student can use as much or as little of the instructions
and explanations as desired, thus both avoiding
information overload and frustration from too little
information.

Students fail to learn from ICAI only when there are
negative forces set up against learning [23] such as
unfriendly, difficult interfaces. By unleashing the
power of the computer in creating a seemingly
invisible desktop tutorial interface, we provide an ideal
programming learning environment. The format of the
PLE defines boundaries unobtrusively while leaving
the horizons of the domain open for the student to
acquire the desired knowledge. Bitmapped windows,
the mouse, and high-powered (MIPS, memory,
windowing operating systems), low-cost,
microprocessor-based computers have made possible
high-bandwidth, self-evident ICAI interfaces.

The Desktop Interface Implementation of the
PLE

The Desktop Interface implemented for the ZetaLISP
PLE resembles a desk with relevant documents spread
out neatly on it; because there are several discrete
stages in the PLE, there is a separate desktop for each
stage. Each desktop is divided into four or five parts
(windows) with each part representing one document;
if a document cannot be seen completely in its window,
the window scrolls (using the mouse) to permit unseen
sections to be read. People can deal with from four to
seven chunks of data at one time [8]. The division of
the desktop into less than seven chunks is designed to
fit this cognitive model and thereby to limit the
student working memory load. Desktops and windows

138

are consistent in format and function. Each desktop
must be self-contained so that the student can
concentrate on learning the desired knowledge of the
domain and not on operating the interface or searching
books for additional information. All options are
selected with the mouse. Code for examples and
problem solutions can be executed by clicking the
mouse on an appropriate menu item. The student can
hardcopy the window contents for easier reading,
making notes, or for future reference [23].

Four desktops comprise the Desktop Interface for this
PLE. The first three have been implemented; the
fourth has not been designed. The first desktop is the
Selections Desktop (Figure 2). In the Selections
Desktop the student selects, with the tutor's assistance
(based on past performance), the topic of study by
selecting an example topic with the mouse. This
desktop also contains a LISP listener where the student
can enter and execute LISP code if desired for any
reason. When an example topic is agreed on between
the tutor and the student, the student is taken to the
second desktop, the Study Desktop (Figure 3).

In the Study Desktop, the student is presented with
instructions for the desktop, the code for the selected
example topic, explanations for the topic, and a LISP
listener. Because so much information about
programming is conveyed only by executing programs,
the student can execute the code for the example being
studied by selecting a box with the mouse at the
bottom of the LISP listener (Figure 4). When the
student has finished studying the example, he or she
can work problems posed by the tutor which are
variations of the code of the example studied by
selecting a box with the mouse at the bottom of the
LISP listener. In this case, the student is taken to the
third desktop, the Tutorial Desktop. As before, there
are instructions for this desktop and the code of the
example from the Study Desktop.

In the Tutorial Desktop, the student clicks the mouse
on the menu item "Show Variation Choices" and is then
presented with a list of available problems. Once the
student selects a problem to work, the code of the
problem, which is a variation of the example studied, is
loaded in a window (code which the student is to
supply is missing, from a few lines to whole functions).
Guidelines for working the problems appear in reverse
video and a reverse video window appears over the
example code window for the student to enter the
missing code according to the guidelines (Figure 5).
The student enters ZetalLISP code and the tutor

NASA JSC MSD MPAD ZITA: Zetalisp Intelligent Tutoring Assistant

Available Example Selections

===> HOW DO I WORK <=== Basic Flavors & Methods Momentary Pop-Up Menu
Choose Multiple Variable Values Hindow Choose Multiple Fixed Values Hindow Return to Study Windows
Return to Tutoria) Windows Quit & Leave Tutor

ORIGINAL PAGE IS
CF POOR QUALITY,

Conmand :

Selections LISP Listener

Figure 2. The Selections Desktop of the Desktop Interface.

NASA JSC MSD MPAD ZITA: Zetalisp Intelligent Tutoring Assistant

Connand:
4, The instructions for studying the example you selected are in
the Instructions Hindow (this window).
S. To RETURN to the example Selections, click the mouse on the
indicated box to the right in the Listener window.
6. To TRYOUT variations of this example, click the nouse on the
indicated box to the right in the Listener window.
7. To RUN the exanmple you selected, click the mouse on the
Study Instructions Window §Study LISP Listener
HRROCOPY [TP 0O 80770 [RETURN to Selections [J TUTORED Variations [J RUN Example OJ
e—

- Mode: LISP; Base: 10.; Package: COMMON-LISP-USER

—
1. This window will explain the nonentary popup menu exanmple you
have selected to study. The menu which appears in this example
remains on the screen only so long 8s the mouse remains in ft.
1f the mouse is moved outside the popup window, the windouw

5
(dafvar *color-menu-exampla* nil)

h
(defflavor color-choice ()

disappears. The windou also disappears when a selection is made. {tvimomantary-manu)
When & selection is made, a value assigned to that selection is (:default-init-plist
returned as the side effect, IFf the nouse is noved outside the 5 bold thick borders
windou without making a selection, NIL is returned as the side ibordars 6
effect. ; large bold characters

:font-map ‘(fonts:bigfnt fonts:hl12i)
slabal *(:top :string “Select Coll L * :font fontsihl 12§
2. The code for this example appears in the Code Hindou at the ; choi si(n mponu 9 "Select Golor of Issua® stont fonts)

lower right. There are nany pernutations of this vindou; borders sitem-list ‘("Blue” "Raed" "Yallow" "Green” "Orange*)})
can be nade less or more bold, more items can be added, the labell];
can be changed, the text can be presented in different fonts and J{setq *color-manu-exampla® (tv:make-window ‘color-choice))
so forth. Notice that nothing in the code defines the size of B
the window or where it is to appear. The default size is that f"‘;"‘"f momentarypopup () :

which is large enough to hold the item 1ist and title, given the J’ h® ichoose message below actually causes the manu to pop-up
specified font sizes, the nunber and length of nenu items; the ; your choice (nit it you move tha mouse out of the manu without choosing)
P o 9 3 ; is returned In *twimc® when you click the mouse on a color cholce
default position of appearance is at the mouse cursor position. (setq *twime® (send *color~menu-exampla® :choose)))

Notice also that the windou contents below the popup menu is R
preserved, ie, uhen the popup window disappears, the contents of QNI
the windou belou renain intact.

3. Refar to pages 213-228 of Volume 7, Programming the User
Interface for further details.

NIL
Study Explanations Window Study Code Window
HARDCOPY ToF 0O B0TToM O3 HARDCOPY O 0P 0 85TTOM O

Figure 3. The Study Desktop of the Desktop Interface.

139

NASA JSC MSD MPAD ZITA: Zetalisp Intelligent Tutoring Assistant

the Instructions Window (this windou).

indicated box to the right in the Listener window.

indicated box to the right in the Listener windou.

7. To RUN the exanple you selected, click the mouse on the
indicated box to the right in the Listener window.

If the mouse is moved outside the popup window, the uindow
disappears.
Hhen 8 selection is nade, a

returned as the side effect.
effect.

lower right.
can be nade less or nore bold, more itens can be added,

so forth.
the uindou or where it is to appeasr.

Hotice also that the uindou contents belou the popup menu is
preserved, ie, when the popup window disappears,
the window below remain intact.

3. Refer to pages 213-228 of Volune 7, Progranning the User

Interface for further detsils.
NIL

Study Explanations Window

4. Yhe instructions for studying the exanp!e you selected are in
S. Yo RETURN to the example Selections, click the nouse on the

6. To TRYOUT variations of this example, click the mouse on the

Study Instructions Window
HARDCOPY ” TOP ” BOTTOM [
I —

1. This ulndou will explain the nonentary popup nenu exanple you
have selected to study. The menu which appears in this exanple
renains on the screen only so long 8s the mouse renains in {t.

The windou also disappears uhen a selection is made.

value assigned to that selection is
If the mouse {s moved outside the

window uithout naking & selection, NIL is returned as the side

2. The code for this example appears in the Code Hindouw at the
There are nany permnutations of this uindou; borders
the lebel[:
can be changed, the text can be presented in different fonts and J(setq *color-manu-axample® (tv:make-window 'color-choice)}
Notice that nothing in the code defines the size of
The default size is that
which is large enough to hold the item 1ist and title, given the
specified font sizes, the number and length of menu itens; the
default position of appesrance is at the nouse cursor position.

the contents of

Conmand:

Select Color of Issue
Blue
Study LISP Listener Red
RETURN to Selections [J TUTORED Variations Yell
i3 =*= Mode: LISP; Base: 10.; Package: COMMON-LISP-USE e oH
i Green
(datvar *color-menu-axampla® nil) or ange

h
{defflavor color-choica ()
{tv:momantary-menu)
(:defauit-init-plist
i bold thick bordars
borders 6
; large bold charactars
:font-map '{fontsibigfnt fonts:nl121)
label '(:top :string “Select Color of issua® :font fonts:hl 12i)
; choices in manu
sitem=-list '("Blue” “Rad* *Yellow" "Grean® “Orange”)))

{defun momentarypopup ()
i the :choose message balow actually causes the menu to pop-up
3 your choice (nil if you move the mouse out of the menu without choosing)
i is returnad in *twimc* when you click the mousa on a color choice
(setq *twimc® (send “color-menu-example® ichoosa)))

§
NIL

Study Code Window

HARDCOPY (1 ToFr_ O BoTTONn)

HARDCOPY [0

ToF O B8OTTOM O

Figure 4. Student executing code for the example being studied on the Study

Desktop.

attempts to diagnose bugs and offer corrective
dialogue. When the student successfully completes the
problem, the tutor inserts the code into the variation
code window and the student can execute the problem
solution (Figure 6) by clicking the mouse on the menu
item "Run Variation with User Code”. The student may
then select another problem on the current topic or
return to the Selections Desktop to choose another
topic.

The fourth desktop, the Planning and Goals Help
Desktop, has not been implemented yet. Because
successful programming requires knowledge of how to
both recognize recurring operations and make goals
and plans to perform those operations, unsuccessful
programmers will exhibit a lack of such abilities.
Consequently, the tutor will have to help not only with
syntax but also with establishing programming goals
and plans. Overcoming this inability is critical if the
student is to learn programming [18], [14], [6], [7].
Thus, when the student demonstrates an inability to
form correct programming goals and plans, he or she
will be transferred to this desktop and will be assisted
by the tutor in devising successful goals and plans for

140

the selected problem before being returned to the
Tutorial Desktop. Once back in the Tutorial Desktop,
the tutor will assist the student in writing code based
on the goals and plans developed in the Planning and
Goals Help Desktop.

Expectations for an ICAI PLE

We expect the PLE to satisfy a number of sound
cognitive principles. The actual layout of the PLE is not
important so long as the underlying structure makes
the semantics of the domain evident, that is, makes it
easy to carry out actions in the domain, and to see and
understand the results and implications of those
actions. It must support students as they acquire an
understanding of the complex semantic domain of
programming, minimizing the gap between
expectations and actions supported. Certainly it is
specialized, highly integrated with the domain and
semantically rich with high-bandwidth information
transfer between interface and student. It avoids
low-bandwidth, semantically weak interfaces which
greatly complicate the diagnosis problem. By offering
a good match to goals and plans of the student as they

CRIGINAL PAGE IS
OF POOR QUALITY,

utorial Bulletin Boa:

Tutaerial Choices

tgeometry statement to make the menu appear
initializing, one wmowment please
1’a regdy nom, please begin '
step 2 ok, please continue

step & ok, plesse rontinwe

{defvar *color-menu-exampla=v 1* nil)

(defflavor color-choice=v1 ()
(tvimomentary-menu)
(:default-init-plist

; bold thick borders

borders 6 ,

i large bold characters .

font-map ‘(fontsibigfnt fonts:ni12i)

rgeometry ‘(5 n

user entered code for new geometry--1 row, 5 columns goas here ;
jm==danswer goes hare

:label ‘(:top :string “Selact Color of Issua® ifont fonts:hl 12i)
; choices in menu
itam=list '("Blue” “Red* “Yallow" "Grean" “Orange”)))

i

Tutorial Varfations Window
RARDCOPY 1] T0F

BOTTOM I
N

Comnand:

Resetting ART...

Knowledge base has been reset.
Ho epplicable rules.

OF POOR

No applicable rules.

No applicable rules.

Tutorial LISP Listener

ORIGIMAT,

Expose Bulletin Board
Expose Tutorial Instructions
Return te Study Example
Return to Selections
Run Variation with User Code
Show Variation Choices
Show Variation Guidelines

PACT 18

QUALITY

Figure 5. Student entering code to solve the problem posed by the ZetaLISP tutor on

the Tutorial Desktop.

. . NASA JsC MSD MPAD ZITA: Zetalisp Intelligent Tutoring Assistant

step » please continue

step 11 ok, please continue

| Tutorial Choices
Expose Bulletin Board
Expose Tutorial Instructions

Return to Study Example

Select Color of issue

'11 Congratulations your code is complete and correct Blue Red

>Click left on the Close Bulletin Board box to continue
The ansuer has been inserted into the variation code and you can ren it

wish by clicl g left on Run Variation with User Code

if you

Yellow Green Orange

ouw Uariation Guidelines

i3 =*= Moda: LISP; Base: 10.; Package: COMMON-LISP-USER -*- i

- Mode: LISP; Base: 10.; Package: COMMON-LISP-USER -*-

(detvar *color-manu-axampla-v 1% nil) (defvar ®color-manu-example® nil)

i
(defflavor color-choaice ()
(tv:momentary-menu)
(:default-init-plist
; bold thick borders

borders &
; large boid characters

font-map *(fonts:bigfnt fonts:ht12i)

i
(detfiavor cotor-choice-v1 ()
(tv:momantary-menu)
{:default-init-plist
; bold thick bordars
iborders &
; large bold characters
ifont-map ‘(fonts:bigfnt fonts:hl12i)

i user entarad code for new geomatry--1 row, § columns goes here ; choicas in menu

jstart of answar

H Hlabel ‘(:top :string *Select Color of issue” :font fonts:hi121)

iitem=-tist '("Blue” "Red" "Yellow" "Green" “Orange")))

igeomatry (5 nil il it nil i)
;and of answer

i
(setq *color-meny-example® (tvimake-window ‘color-choice))

! labes ‘(:top :string “Select Color of issue” :font fonts:hl 12i) ’
; choices in manu

h
(defun momentarypopup ()
; the ichoose message dalow actuaily causes

Tutorial Variations Window
HARDCOPY [J Tor

BOTTOM IJ
—

Tutorial Example Window
HARDGOPY P BOTTOM
- —

the menu to pop-up

No applicable rules.

No applicable rules.
Ho applicable rules.

Mo applicable rules.

Tuterial LISP Listener

Figure 6. Student executing code for their solution to the problem posed by the

ZetaLISP tutor.

141

learn to program, it accommodates stages of student
conceptualization of the domain and how movement
from one stage to another takes place. It reflects the
task of learning programming, the information that
must be presented, and ways in which students may
interact with the information, that is, how good
programmers organize knowledge and use operators.
Serving as an external memory system, the PLE uses
the desktop metaphor to organize, standardize, define
boundaries, reduce memory requirements, obviate
actions/results, and convey a feeling of control.

Conclusions

We now need, and will continue to need, many
well-trained programmers. The current method of
training programmers is expensive, haphazard, and not
founded on an understanding of how to learn
programming. Over the past five years we have
obtained much knowledge of how to learn
programming and, at the same time, computers and
software have advanced dramatically in capability
while their cost has declined substantially. At this
point we have the knowledge and tools available to
develop an ICAI Programming Learning Environment
and deliver uniform, semantically rich, and cognitively
based tutors to train the necessary programmers. The
Desktop Interface is a candidate authoring vehicle for
such an ICAI PLE. We are continuing, as time permits,
to develop and test the Desktop Interface and the
Student Model in the Zetal.ISP tutor.

References

1. Anderson, J., "Learning to Program," Proceedings
Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe, West Germany, August 8-12,
1983, pp. 57-62.

2. Anderson, J., Boyle, F., Yost, G., "The Geometry
Tutor,” Proceedings Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.,
Aug 17-23, 1985, pp. 1-7.

3. Burton, R., "Diagnosing bugs in a simple procedural
skill,” in Intelligent Tutoring Systems, D. Sleeman and

1.S. Brown, eds., Academic Press, New York, NY, 1982.

4. Burton, R., Brown, ., "An investigation of computer
coaching for informal learning activities” in Intelligent
Tutoring Systems, D. Sleeman and J.S. Brown, eds.,
Academic Press, New York, NY, 1982.

142

5. Dear, B., "Al and the Authoring Process," IEEE
Expert, Summer 1987, pp. 17-24.

6. Farrell, R., Anderson, J., Reiser, B., "An Interactive
Computer-based Tutor for LISP," Proceedings Third
National Conference on Artificial Intelligence, Austin,
Tx, Aug 6-10, 1984, pp. 106-109.

7. Genesereth, M., "The role of plans in intelligent
teaching systems,” in Intelligent Tutoring Systems, D.
Sleeman and J.S. Brown, eds., Academic Press, New
York, NY, 1982.

8. Harmon, P., King, D., Expert Systems, Artificial
Intelligence in Business, John Wiley & Sons, New York,
NY, 1985.

9. Kearsley, G., ed., Artificial Intelligence & Instruction,
Addison-Wesley, Reading, Mass., 1987,

10. Kolodner, J., Simpson, R. Jr., Sycara-Cyranski, K., "A
Process Model of Cased-Based Reasoning in Problem
Solving," Proceedings Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.,
Aug 17-23, 1985, pp. 284-290.

11. Laird, J., Rosenbloom, P., Newell, A., "Towards
Chunking as a General Learning Mechanism,"
Proceedings Third National Conference on Artificial
Intelligence, Austin, Tx, Aug 6-10, 1984, pp. 188-192.

12. Langley, P., Ohlsson, S., "Automated Cognitive
Modeling," Proceedings Third National Conference on
Artificial Intelligence, Austin, Tx, Aug 6-10, 1984, pp.
193-197.

13. Lichtman, D., Watt, P., "Bottom Line Training -
Getting Results, Not Classes,” Manage, Third Quarter
1986, pp. 22-23, 35.

14. Littman, D., Pinto, J., Soloway, E., "An Analysis of
Tutorial Reasoning About Programming Bugs,"
Proceedings Fifth National Conference on Artificial
Intelligence, Philadelphia, Pa., August 11-15, 1986, pp.
320-326.

15. Matz, M., "Towards a process model for high school
algebra errors," in Intelligent Tutoring Systems, D.
Sleeman and J.S. Brown, eds., Academic Press, New
York, NY, 1982.

16. Miller, M., "A Structured Planning and Debugging
Environment for Elementary Programming,” in
Intelligent Tutoring Systems, D. Sleeman and J.S.
Brown, eds., Academic Press, New York, NY, 1982.

17. Miller, J., "Human-computer Interaction and
Intelligent tutoring systems,” MCC Technical Report
Number HI-294-86, April 1987.

18. Orlikowski, W., Vasant, D., "Imposing Structure on
Linear Programming Problems: An Empirical Analysis
of Expert and Novice Models," in Proceedings Fifth
National Conference on Artificial Intelligence,
Philadelphia, Pa., August 11-15, 1986, pp. 308-312.

19. Reiser, B., Anderson, J., Farrell, R., "Dynamic Student
Modelling in an Intelligent Tutor for LISP

Programming," Proceedings Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.,
Aug 17-23, 1985, pp. 8-14.

20. Rissland, E., Valcarce, E., Ashley, K., "Explaining and
Arguing with Examples,” Proceedings Third National
Conference on Artificial Intelligence, Austin, Tx, Aug
6-10, 1984, pp.288-294.

21. Shneiderman, B., Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
Addison-Wesley, Reading, Mass., 1987.

22. Von der Embse, T., "Course Leadership,” Manage,
Volume 39, Number 2, July 1987, pp. 7-8, 33.

23. Weinberg, G., The Psychology of Computer
Programming, Van Nostrand Reinhold Company, New
York, NY, 1971.

24. Woolf, B. and Cunningham, P., "Multiple Knowledge

Sources in Intelligent Teaching Systems,"” IEEE Expert,
Summer 1987, pp. 41-54.

143

Dynamic Human Dexterity and Control System (DEXDROID)

(Paper not provided by publication date)

FRECEDING PAGE BLANK NOT FILMZD

145

N88-17226

SYSTEMS INTEGRATED HUMAN ENGINEERING ON THE NAVY'S RAPID ACQUISITION
OF MANUFACTURED PARTS/TEST AND INTEGRATION FACILITY

ORIGINAL PAGE IS

OF POOR QUALITY Glen R. Gallaway

Battelle Columbus Division
Columbus, Ohio 43201

ABSTRACT

The Human Engineering function in many projects is at best a Timited support

function. In this NAVY project the Human Engineering function is an integral
component of the systems design and development process. Human Engineering is a
member of the systems design organization. This ensures that people

considerations are: 1) Identified early in the project; 2) Accounted for in the
specifications; 3) Incorporated into the design; and 4) The tested product meets
the needs and expectations of the people while meeting the overall systems
requirements. The project exemplifies achievements that can be made by the
symbiosis between systems designers, engineers, and Human Engineering. This
approach increases Human Engineering's effectiveness and value to a project
because it becomes an accepted, contributing team member. It is an approach to
doing Human Engineering that should be considered for most projects. The
functional and organizational issues that give this approach strength are

described in the paper.

PROJECT BACKGROUND

The purpose of the Rapid Acquisition of
Manufactured Parts Test and Integration Facility
(RAMP/RTIF) project is to quickly produce quality
replacement and spare parts for the Navy which are
unavailable when needed. The objective is to make
a substantial reduction in the total time required
to produce parts to thirty working days after
notification of award. Figure 1 shows present
supply system responsiveness and the performance
requirements to be accomplished in the RAMP/RTIF
project.

The RAMP/RTIF Manufacturing System will initially
include manufacturing and process planning systems,

engineering, production control, and order entr

for the production of Small Mechanical Parts (SMP{

?nd ;or the production of Printed Wiring Assemblies
PWA) .

PROJECT HUMAN ENGINEERING ISSUES

The NAVY, from the beginning of the project, has
emphasized that people issues require significant
and appropriate consideration in system design
work. The RAMP/RTIF Human Engineering Program is a
response to those concerns by integrating human
engineering considerations into the design and
development of the RAMP SMP/PWA workcell hardware,

software, procedures and facilities. Special
emphasis is being placed on human engineering
concerns associated with the introduction of
automation into manufacturing, administration,

fabrication, and maintenance of the SMPs and PWAs.
Some of these concerns include ensuring that:

FRECEDING PAGE BLANK NOT FILMED

%

1. Task complexity is not increased by
automation, but rather simplified and made
more efficient.

2. Newly created user interfaces are designed
to be user-friendly, easy to learn, and easy
to use.

3. Potential safety hazards are examined and
eliminated from the design of user
workstations.

4, The user population can effectively,

efficiently and safely operate and maintain
all equipment/software 1in the RAMP/RTIF
(i.e., users can see, reach, and operate
equipment, and can understand and easily use
commands and menus in the software).

5. The data and information that people must
deal with will be appropriate for their
tasks, in a form that will make the task
doable within their skill 1level, and/or
appropriate training is provided.

6. The RAMP/RTIF system is being designed to
ensure that maintenance personpel can
effectively, efficiently, and safely perform
maintenance functions.

THE STRENGTH OF THIS PROJECT APPROACH

The resolution to the NAVY's request for quality
Human Engineering has been a commitment by the

prime contractor (South Carolina Research
Authority) to include Human Engineering in all
stages of the RAMP/RTIF project design and

development. Although the individual tasks that
the human engineer will do on the project are not
uncommon, the manner that they are tied together,
the organization position, and the assignment of
responsibility/accountability are among the factors
that make this Human Engineering function an
effective system engineering team member. The
benefits of this position are that Human
Engineering will contribute to:

3 ~CURRENT OVERALL PROCUREMENT TIME -
PROCUREMENT TIME TO BE ADDRESSED
IN RTIF PROGRAM (174DAYS)
[etf—————— MAJOR EMPHASIS OF ——— -
ATIF PROGRAM i
42% 48% 10%
PROCUREMENT MANUFACTURING "g //
ADMINISTRATIVE / ADMINISTRATIVE ‘\y’
\!
GOVERNMENT LEAD TIME / LEAD TIME \G‘;‘/‘/
onicinanion | PROCUREMENT Peﬁ\//
LEAD TIME <
D (VARIABLE) /
OF PART §
REQUIREMENT ' 2 Y o /

' 2 o \y Qo

i o« /4 > e
z| 22 T ®
OI - o [o) /0‘
= Sa 'f:" 6“‘
@l 20 ﬁ\f' ol
3] &
ol
! RAMP RAMP
o 1 Z

— 34 20

Figure 1 RAMP System Requirements Vs Present Average
Supply System Responsiveness

Likelihood that the WHOLE PROJECT will
succeed because people were properly
accounted for in the design.

A practical approach to design where human
needs are identified early and incorporated
(integrated) into the systems requirements
specs.

A realistic accounting for people issues in
terms of accomplishing a balance between
people needs and overall system needs.
Providing an effective symbiosis between
people and the system that meets the
performance, accuracy, and acceptability
required.

This paper 1is to show the attributes of the
RAMP/RTIF Human Engineering function that takes
Human Engineering out of a support function (with
little impact on overall system design) and makes
it a system design team member (with appropriate
impact on system design). Each of the following
topics contributes to making Human Engineering a
valuable team member. They are discussed here to
encourage other projects to place Human Engineering
into a similar role where they can greatly improve
their contribution to a project.

148

Strength: SYSTEMS DESIGN CONCEPT

In the RAMP/RTIF project the human engineer must be
concerned with all the various tasks, interfaces,
and specific involvements that people will have
with the RAMP. This means that the human engineer
must work with each of the following functional
areas in order to deal adequately with the people
issues across the project:

0 Systems design, simulation, and integration

0 Hardware/software/process design

0 Safety/hazard analysis

o} Manpower and training

0 Test and evaluation

0 Logistics engineering

0 Operations and maintenance doctrinal
development

0 Configuration control and management
(software/hardware)

0 Program review/approval processes

o Vendor evaluation and selection

0 Architectural facility design, development,
review and approval

0 Engineering change review/implementation
processes

As one looks at all these views that effect design
and development, it is obvious that there must be
synthesis of information across the technical areas
in order to develop a workable design and
development solution. The synthesis of information
across these areas means that important aspects of
a "Systems Design" process are being used. This
concept is being emphasized here because the human
engineer is a RAMP/RTIF team member in this process
which gives great value to the Human Engineering
function. By taking a system view in RAMP/RTIF,
the people issues are dealt with wherever people
have to perform a task, process information, or
will physically come into contact with equipment
and materials. As a result of the systems design
approach, a consistent standard of interaction with
people can be maintained across the system so that
people will always know what to expect and be able
to properly interact.

By taking a systems view in RAMP/RTIF, the people
issues are dealt with wherever people have to

perform a task, process information, or will
physically come into contact with equipment and
materials. As a result of the systems design

approach a consistent standard of interaction with
people can be maintained across the system so that
people will always know what to expect and be able
to properly interact.

Strength: STAGES OF SYSTEM DEVELOPMENT

The stages of system development presented below
are not specifically identified in the same form in
the project but the content is normally covered in
the military system design process. The stages are
mentioned here to clarify and emphasize the scope
of the "System Design" work that the human engineer
has to deal with. The human engineer will play a
role in each of these stages throughout the
project. Collectively the roles describe a
methodology designed to maximize the effectiveness
of the Human Engineering contributions to the
project while minimizing the Human Engineering
resources needed.

o Conceptualization -- The initial identification
and description of the people parameters must be
made here.

o Specification -- With the people issues
identified in the conceptualization stage,
conversion of those issues into integrated
requirements will be more effective. Performance

and acceptance test methods should be defined
here. The tests must specify that the people who
will be using the system will be a part of the
test.

o Design -- Human engineering will develop specific
solutions to meet system specifications. The
person works with the systems, software,
hardware, and other engineers to generate design
solutions that appropriately take care of and
implements a design that meets needs.

149

o Development -- As the design is being implemented
the human engineer works with the engineering to
formulate and ensure that design solutions are
appropriate for the people who will be involved
with the system. Implementation solutions will
be user tested throughout the development stage
to evaluate effectiveness of design and aid in

making modifications in implementation where
necessary.
o Test -- Participate in evaluation of the system.

Evaluate the effects of the system on people and
the effectiveness of people to use the system.
Show that system performance and acceptance meets
requirements with people using the system.

Strength: HUMAN ENGINEERING APPROACH TO WORK

Support Function, No!

Traditionally people outside the Human Engineering
discipline have viewed Human Engineering as a
support function that is limited to concern for
computer screen design, and controls and displays
work. Human Engineering therefore has often been
relegated to do specific, and very limited tasks
that are considered to be within th